IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v4y2015i2p203-226d48530.html
   My bibliography  Save this article

Climate Change Impacts on Oklahoma Wind Resources: Potential Energy Output Changes

Author

Listed:
  • Stephen Stadler

    (Geography Department, Oklahoma State University, Stillwater, OK 74078, USA)

  • James Mack Dryden

    (EDP Renewables North America, 808 Travis, Suite 700 Houston, TX 77002, USA
    These authors contributed equally to this work.)

  • J. Scott Greene

    (Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, OK 73019, USA
    These authors contributed equally to this work.)

Abstract

An extensive literature on climate change modeling points to future changes in wind climates. Some areas are projected to gain wind resources, while others are projected to lose wind resources. Oklahoma is presently wind rich with this resource extensively exploited for power generation. Our work examined the wind power implications under the IPCC’s A2 scenario for the decades 2040–2049, 2050–2059 and 2060–2069 as compared to model reanalysis and Oklahoma Mesonetwork observations for the base decade of 1990–1999. Using two western Oklahoma wind farms as examples, we used North American Regional Climate Change Assessment Program (NARCCAP) modeling outputs to calculate changes in wind power generation. The results show both wind farms to gain in output for all decades as compared to 1990–1999. Yet, the results are uneven by seasons and with some decades exhibiting decreases in the fall. These results are of interest in that it is clear that investors cannot count on wind studies of the present to adequately characterize future productivity. If our results are validated over time, Oklahoma stands to gain wind resources through the next several decades.

Suggested Citation

  • Stephen Stadler & James Mack Dryden & J. Scott Greene, 2015. "Climate Change Impacts on Oklahoma Wind Resources: Potential Energy Output Changes," Resources, MDPI, vol. 4(2), pages 1-24, April.
  • Handle: RePEc:gam:jresou:v:4:y:2015:i:2:p:203-226:d:48530
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/4/2/203/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/4/2/203/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Breslow, Paul B. & Sailor, David J., 2002. "Vulnerability of wind power resources to climate change in the continental United States," Renewable Energy, Elsevier, vol. 27(4), pages 585-598.
    2. Sailor, David J. & Smith, Michael & Hart, Melissa, 2008. "Climate change implications for wind power resources in the Northwest United States," Renewable Energy, Elsevier, vol. 33(11), pages 2393-2406.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lucy Cradden & Gareth Harrison & John Chick, 2012. "Will climate change impact on wind power development in the UK?," Climatic Change, Springer, vol. 115(3), pages 837-852, December.
    2. Gonçalves-Ageitos, María & Barrera-Escoda, Antoni & Baldasano, Jose M. & Cunillera, Jordi, 2015. "Modelling wind resources in climate change scenarios in complex terrains," Renewable Energy, Elsevier, vol. 76(C), pages 670-678.
    3. Wimhurst, Joshua J. & Greene, J. Scott, 2019. "Oklahoma's future wind energy resources and their relationship with the Central Plains low-level jet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    4. Wang, Bing & Ke, Ruo-Yu & Yuan, Xiao-Chen & Wei, Yi-Ming, 2014. "China׳s regional assessment of renewable energy vulnerability to climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 185-195.
    5. Markus Gross & Vanesa Magar, 2016. "Offshore Wind Energy Climate Projection Using UPSCALE Climate Data under the RCP8.5 Emission Scenario," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-12, October.
    6. Katopodis, Theodoros & Markantonis, Iason & Vlachogiannis, Diamando & Politi, Nadia & Sfetsos, Athanasios, 2021. "Assessing climate change impacts on wind characteristics in Greece through high resolution regional climate modelling," Renewable Energy, Elsevier, vol. 179(C), pages 427-444.
    7. Pes, Marcelo P. & Pereira, Enio B. & Marengo, Jose A. & Martins, Fernando R. & Heinemann, Detlev & Schmidt, Michael, 2017. "Climate trends on the extreme winds in Brazil," Renewable Energy, Elsevier, vol. 109(C), pages 110-120.
    8. Pryor, S.C. & Barthelmie, R.J., 2010. "Climate change impacts on wind energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 430-437, January.
    9. Wang, Bing & Liang, Xiao-Jie & Zhang, Hao & Wang, Lu & Wei, Yi-Ming, 2014. "Vulnerability of hydropower generation to climate change in China: Results based on Grey forecasting model," Energy Policy, Elsevier, vol. 65(C), pages 701-707.
    10. Schaeffer, Roberto & Szklo, Alexandre Salem & Pereira de Lucena, André Frossard & Moreira Cesar Borba, Bruno Soares & Pupo Nogueira, Larissa Pinheiro & Fleming, Fernanda Pereira & Troccoli, Alberto & , 2012. "Energy sector vulnerability to climate change: A review," Energy, Elsevier, vol. 38(1), pages 1-12.
    11. Huang, Junling & McElroy, Michael B., 2015. "A 32-year perspective on the origin of wind energy in a warming climate," Renewable Energy, Elsevier, vol. 77(C), pages 482-492.
    12. Johnson, Dana L. & Erhardt, Robert J., 2016. "Projected impacts of climate change on wind energy density in the United States," Renewable Energy, Elsevier, vol. 85(C), pages 66-73.
    13. Jane Ebinger & Walter Vergara, 2011. "Climate Impacts on Energy Systems : Key Issues for Energy Sector Adaptation," World Bank Publications - Books, The World Bank Group, number 2271.
    14. Carta, José A. & Velázquez, Sergio & Cabrera, Pedro, 2013. "A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 362-400.
    15. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
    16. Simon Watson, 2014. "Quantifying the variability of wind energy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 330-342, July.
    17. Ignacio Losada Carreño & Michael T. Craig & Michael Rossol & Moetasim Ashfaq & Fulden Batibeniz & Sue Ellen Haupt & Caroline Draxl & Bri-Mathias Hodge & Carlo Brancucci, 2020. "Potential impacts of climate change on wind and solar electricity generation in Texas," Climatic Change, Springer, vol. 163(2), pages 745-766, November.
    18. Harrison, Gareth P. & Wallace, A. Robin, 2005. "Climate sensitivity of marine energy," Renewable Energy, Elsevier, vol. 30(12), pages 1801-1817.
    19. Yau, Y.H. & Pean, H.L., 2011. "The climate change impact on air conditioner system and reliability in Malaysia—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4939-4949.
    20. Khaled Yassin & Hassan Kassem & Bernhard Stoevesandt & Thomas Klemme & Joachim Peinke, 2022. "Numerical Simulation of Roughness Effects of Ice Accretion on Wind Turbine Airfoils," Energies, MDPI, vol. 15(21), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:4:y:2015:i:2:p:203-226:d:48530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.