IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v12y2023i1p7-d1023941.html
   My bibliography  Save this article

Assessment and Quantitative Evaluation of Loess Area Geomorphodiversity Using Multiresolution DTMs (Roztocze Region, SE Poland)

Author

Listed:
  • Marcin Siłuch

    (Institute of Earth and Environmental Sciences, Maria Curie-Skłodowska University, 20-718 Lublin, Poland)

  • Waldemar Kociuba

    (Institute of Earth and Environmental Sciences, Maria Curie-Skłodowska University, 20-718 Lublin, Poland)

  • Leszek Gawrysiak

    (Institute of Earth and Environmental Sciences, Maria Curie-Skłodowska University, 20-718 Lublin, Poland)

  • Piotr Bartmiński

    (Institute of Earth and Environmental Sciences, Maria Curie-Skłodowska University, 20-718 Lublin, Poland)

Abstract

The geodiversity of loess areas is reflected in the characteristic dataset of loess landforms, with the dominance of several types of valley forms (mainly gullies). The availability of satellite elevation data and high-resolution aerial topography scanning data provides an opportunity for quantitative assessment of geomorphodiversity. This is done through the analysis of topographic texture, delimitation and statistical characterization of the topographic parameters of erosional landforms, such as volume and degree of dissection (density of valleys) or the degree of ‘coverage’ of the area by valley forms. An important factor affecting the accuracy of the estimation is the accuracy of the underlying digital terrain model (DTM). This study compares three digital terrain models, with cell sizes of 30, 10 and 1 m, generated from satellite altimetry data and airborne laser scanning (ALS) data. The subregion of Szczebrzeszyn Roztocze (Western Roztocze Region, SE Poland), i.e., one of the most typical loess relief regions in Poland, was selected as the study area. Selected topographic texture analyses were carried out using the SLRM (Simple Local Relief Model) algorithm. Delimitation of valleys was performed by delineating the extent of slope change in two key steps: (1) detection of areas below the average topographic surface; (2) delimitation using supervised classification of DTMs. The results of the study show that the accuracy of delimitation of valleys increases inversely proportional to the DTMs resolution. Automated topographic texture analysis allows delimitation and extraction, as well as statistical analysis of parameters of valleys. Finally, two indicators have been proposed, Relative Valley Area (RVA) and Area-normalised Valley Cubature (AVC), which can be used in geomorphodiversity studies of a geologically homogeneous area. The dimensionless RVA index can also be expressed as a percentage (%) of the area of valley forms in a basic field of 1 km 2 . Furthermore, the AVC index shows the dynamic character of the main relief features of the analysed area.

Suggested Citation

  • Marcin Siłuch & Waldemar Kociuba & Leszek Gawrysiak & Piotr Bartmiński, 2023. "Assessment and Quantitative Evaluation of Loess Area Geomorphodiversity Using Multiresolution DTMs (Roztocze Region, SE Poland)," Resources, MDPI, vol. 12(1), pages 1-24, January.
  • Handle: RePEc:gam:jresou:v:12:y:2023:i:1:p:7-:d:1023941
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/12/1/7/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/12/1/7/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shifa Chen & Wen Liu & Yonghui Bai & Xiaoying Luo & Hangfei Li & Xuan Zha, 2021. "Evaluation of watershed soil erosion hazard using combination weight and GIS: a case study from eroded soil in Southern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1603-1628, November.
    2. Waldemar Kociuba & Grzegorz Janicki & Jan Rodzik & Krzysztof Stępniewski, 2015. "Comparison of volumetric and remote sensing methods (TLS) for assessing the development of a permanent forested loess gully," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 139-158, November.
    3. Juliana P. Silva & Diamantino I. Pereira & Alexandre M. Aguiar & Cleide Rodrigues, 2013. "Geodiversity assessment of the Xingu drainage basin," Journal of Maps, Taylor & Francis Journals, vol. 9(2), pages 254-262, June.
    4. Lars Erikstad & Vegar Bakkestuen & Rolv Dahl & Mari Lie Arntsen & Annina Margreth & Tine Larsen Angvik & Linda Wickström, 2022. "Multivariate Analysis of Geological Data for Regional Studies of Geodiversity," Resources, MDPI, vol. 11(6), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ionut-Costel Codru & Lilian Niacsu & Andrei Enea & Latifa Bou-imajjane, 2023. "Gully Head-Cuts Inventory and Semi-Automatic Gully Extraction Using LiDAR and Topographic Openness—Case Study: Covurlui Plateau, Eastern Romania," Land, MDPI, vol. 12(6), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paweł Wolniewicz, 2023. "Quantifying Geodiversity at the Continental Scale: Limitations and Prospects," Resources, MDPI, vol. 12(5), pages 1-28, May.
    2. Mária Barančoková & Daniela Hutárová & Maroš Nikolaj, 2023. "Quantitative Assessment of Geodiversity for Conservation Purposes in Slovenské rudohorie Mountains (Slovakia)," Land, MDPI, vol. 12(9), pages 1-28, August.
    3. Margaret Kalacska & Oliver Lucanus & Leandro Sousa & J. Pablo Arroyo-Mora, 2020. "High-Resolution Surface Water Classifications of the Xingu River, Brazil, Pre and Post Operationalization of the Belo Monte Hydropower Complex," Data, MDPI, vol. 5(3), pages 1-12, August.
    4. Alejandro Arias-Díaz & Hugo Murcia & Felipe Vallejo-Hincapié & Károly Németh, 2023. "Understanding Geodiversity for Sustainable Development in the Chinchiná River Basin, Caldas, Colombia," Land, MDPI, vol. 12(11), pages 1-36, November.
    5. Pengfei Du & Donghao Huang & Bing Liu & Wei Qin, 2023. "Using Source Fingerprinting Techniques to Investigate Sediment Sources during Snowmelt and Rainfall Erosion Events in a Small Catchment in the Black Soil Region of Northeast China," Land, MDPI, vol. 12(3), pages 1-20, February.
    6. Vladyslav Zakharovskyi & Károly Németh, 2023. "Recognition of Potential Geosites Utilizing a Hydrological Model within Qualitative–Quantitative Assessment of Geodiversity in the Manawatu River Catchment, New Zealand," Geographies, MDPI, vol. 3(1), pages 1-19, February.
    7. Vladyslav Zakharovskyi & Károly Németh, 2021. "Quantitative-Qualitative Method for Quick Assessment of Geodiversity," Land, MDPI, vol. 10(9), pages 1-21, September.
    8. Vladyslav Zakharovskyi & Károly Németh, 2022. "Geomorphological Model Comparison for Geosites, Utilizing Qualitative–Quantitative Assessment of Geodiversity, Coromandel Peninsula, New Zealand," Geographies, MDPI, vol. 2(4), pages 1-20, October.
    9. Vladyslav Zakharovskyi & Károly Németh, 2022. "Scale Influence on Qualitative–Quantitative Geodiversity Assessments for the Geosite Recognition of Western Samoa," Geographies, MDPI, vol. 2(3), pages 1-15, August.
    10. Laura Valentini & Veronica Guerra & Olivia Nesci, 2023. "The Mt. Catria–Mt. Nerone Ridge in the North-Marchean Apennines (Central Italy): A Potential Geopark?," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    11. Andrea Ferrando & Francesco Faccini & Guido Paliaga & Paola Coratza, 2021. "A Quantitative GIS and AHP Based Analysis for Geodiversity Assessment and Mapping," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
    12. Mingtao Wang & Chunming Ye & Dingkun Zhang, 2022. "Evaluation of Green Manufacturing Level in China’s Provincial Administrative Regions Based on Combination Weighting Method and TOPSIS," Sustainability, MDPI, vol. 14(20), pages 1-26, October.
    13. Brijesh Yadav & Lal Chand Malav & Raimundo Jiménez-Ballesta & Chiranjeev Kumawat & Abhik Patra & Abhishek Patel & Abhishek Jangir & Mahaveer Nogiya & Roshan Lal Meena & Pravash Chandra Moharana & Nirm, 2022. "Modeling and Assessment of Land Degradation Vulnerability in Arid Ecosystem of Rajasthan Using Analytical Hierarchy Process and Geospatial Techniques," Land, MDPI, vol. 12(1), pages 1-20, December.
    14. Edmundo Wallace Monteiro Lucas & Fabrício Daniel dos Santos Silva & Francisco de Assis Salviano de Souza & David Duarte Cavalcante Pinto & Heliofábio Barros Gomes & Helber Barros Gomes & Mayara Christ, 2022. "Regionalization of Climate Change Simulations for the Assessment of Impacts on Precipitation, Flow Rate and Electricity Generation in the Xingu River Basin in the Brazilian Amazon," Energies, MDPI, vol. 15(20), pages 1-26, October.
    15. Xiangqun Xie & Xinke Wang & Zhenfeng Wang & Hong Lin & Huili Xie & Zhiyong Shi & Xiaoting Hu & Xingzhao Liu, 2023. "Influence of Landscape Pattern Evolution on Soil Conservation in a Red Soil Hilly Watershed of Southern China," Sustainability, MDPI, vol. 15(2), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:12:y:2023:i:1:p:7-:d:1023941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.