IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v11y2022i10p89-d930341.html
   My bibliography  Save this article

Separation of Magnesium and Lithium from Brine Water and Bittern Using Sodium Silicate Precipitation Agent

Author

Listed:
  • Eko Sulistiyono

    (Department of Metallurgical and Materials Engineering, Universitas Indonesia, Depok 16424, Indonesia)

  • Sri Harjanto

    (Department of Metallurgical and Materials Engineering, Universitas Indonesia, Depok 16424, Indonesia)

  • Latifa Hanum Lalasari

    (Research Center of Metallurgy, National Research and Innovation Agency, South Tangerang 15314, Indonesia)

Abstract

Potential natural resources of lithium in Indonesia from brine water and bittern generally have low lithium and high magnesium levels, which need to be separated before further extraction. This research investigates the separation process of magnesium from brine water and bittern using a sodium silicate solution. The experimental results showed that the magnesium precipitation efficiency using sodium silicate was better in brine water than in bittern. A separation selectivity ratio of magnesium to lithium (Mg/Li) below 1 was obtained in brine water of 0.59 and bittern of 0.11 with the addition of a 1.25 mole fraction of sodium silicate solution to magnesium ions. After the precipitation at optimum addition of sodium silicate and water leaching process using distilled water, lithium’s recovery in the brine water and bittern filtrate was 84% and 35%, respectively. In brine water, water leaching increased lithium and magnesium ions in the filtrate. However, in bittern, the water leaching increased lithium recovery without dissolving magnesium ions into the filtrate. The precipitation products from the bittern were identified as complex lithium compounds in the forms of Li 2 MgO 4 SiLi 2 (MgSiO 4 ) and LiMg 4 Na 3 O 30 Si 12 phases, while the precipitation products in brine water mostly had a phase of CaO·MgO·Si 2 O 5 (Diopside) and LiCl.

Suggested Citation

  • Eko Sulistiyono & Sri Harjanto & Latifa Hanum Lalasari, 2022. "Separation of Magnesium and Lithium from Brine Water and Bittern Using Sodium Silicate Precipitation Agent," Resources, MDPI, vol. 11(10), pages 1-12, September.
  • Handle: RePEc:gam:jresou:v:11:y:2022:i:10:p:89-:d:930341
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/11/10/89/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/11/10/89/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laurence Kavanagh & Jerome Keohane & Guiomar Garcia Cabellos & Andrew Lloyd & John Cleary, 2018. "Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review," Resources, MDPI, vol. 7(3), pages 1-29, September.
    2. Damien Giurco & Steve Mohr & Gavin Mudd & Leah Mason & Timothy Prior, 2012. "Resource Criticality and Commodity Production Projections," Resources, MDPI, vol. 1(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rabia Khatoon & Ratchaprapa Raksasat & Yeek Chia Ho & Jun Wei Lim & Khairulazhar Jumbri & Chii-Dong Ho & Yi Jing Chan & Eman Alaaeldin Abdelfattah & Kuan Shiong Khoo, 2023. "Reviewing Advanced Treatment of Hydrocarbon-Contaminated Oilfield-Produced Water with Recovery of Lithium," Sustainability, MDPI, vol. 15(22), pages 1-29, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pranjal Barman & Lachit Dutta & Brian Azzopardi, 2023. "Electric Vehicle Battery Supply Chain and Critical Materials: A Brief Survey of State of the Art," Energies, MDPI, vol. 16(8), pages 1-23, April.
    2. János Szanyi & Ladislaus Rybach & Hawkar A. Abdulhaq, 2023. "Geothermal Energy and Its Potential for Critical Metal Extraction—A Review," Energies, MDPI, vol. 16(20), pages 1-28, October.
    3. Linbin Tang & Peng Wang & Zijie Ma & Stefan Pauliuk & Wei‐Qiang Chen & Tao Dai & Zipeng Lin, 2023. "Exploring the global trade networks of the tungsten supply chain: Insights into the physical and monetary mismatch among countries," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 323-335, February.
    4. Zhang, Xiaojing & Chang, Hsu-Ling & Su, Chi-Wei & Qin, Meng & Umar, Muhammad, 2024. "Exploring the dynamic interaction between geopolitical risks and lithium prices: A time-varying analysis," Resources Policy, Elsevier, vol. 90(C).
    5. Bledea, Cosmin Codruț & Pop, Izabela Luiza & Toader, Rita Monica, 2022. "The effects on the economy and environment caused by electric cars compared to the conventional ones," MPRA Paper 118639, University Library of Munich, Germany.
    6. Ewa Knapik & Grzegorz Rotko & Marta Marszałek & Marcin Piotrowski, 2023. "Comparative Study on Lithium Recovery with Ion-Selective Adsorbents and Extractants: Results of Multi-Stage Screening Test with the Use of Brine Simulated Solutions with Increasing Complexity," Energies, MDPI, vol. 16(7), pages 1-20, March.
    7. Liu, Donghui & Gao, Xiangyun & An, Haizhong & Jia, Nanfei & Wang, Anjian, 2024. "Exploring market instability of global lithium resources based on chaotic dynamics analysis," Resources Policy, Elsevier, vol. 88(C).
    8. Emilio Castillo & Irene Real & Cintia Roa, 2024. "Critical minerals versus major minerals: a comparative study of exploration budgets," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 37(3), pages 433-444, September.
    9. Nebojša Stefanović & Nataša Danilović Hristić & Jasna Petrić, 2023. "Spatial Planning, Environmental Activism, and Politics—Case Study of the Jadar Project for Lithium Exploitation in Serbia," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    10. Kai Li & Qiudan Su & Xiaofan Ma & Haifeng Zhang, 2023. "Research on Lithium Technology Safety Issues: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(5), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:11:y:2022:i:10:p:89-:d:930341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.