IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3149-d1112316.html
   My bibliography  Save this article

Comparative Study on Lithium Recovery with Ion-Selective Adsorbents and Extractants: Results of Multi-Stage Screening Test with the Use of Brine Simulated Solutions with Increasing Complexity

Author

Listed:
  • Ewa Knapik

    (Faculty of Drilling, Oil and Gas, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Grzegorz Rotko

    (Faculty of Drilling, Oil and Gas, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Marta Marszałek

    (Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland)

  • Marcin Piotrowski

    (Faculty of Drilling, Oil and Gas, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow, Poland
    Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland)

Abstract

Oil (and natural gas) field brines can be considered promising sources of lithium for the sustainable supply of a growing market. To date, many materials have been developed for direct lithium recovery from brines, but most often these materials have been tested under various conditions, what makes it impossible to compare them. The aim of this research is to provide knowledge that would enable the comparison and selection of effective sorbents for different types of brines. For this purpose, an eight-step experimental protocol was employed. The recovery tests started with a pure lithium solution (300 mg/kg), and then other salts were gradually added, resulting in a brine containing Li + (220 mg/kg), Na + (7.21 wt%), Ca 2+ (3.0 wt%) and Mg 2+ (1000 mg/kg). For selected cases, the effect of pH was also investigated. Fifty materials (including ion exchange resins, organophosphate extractants, mineral adsorbents) were examined, for which the distribution coefficient and lithium recovery were determined. Moreover, for the most promising materials, lithium over magnesium selectivity and lithium ion capacity were determined. Only γ-Al 2 O 3 , TiO 2 and MnO x -based powders keep their effectiveness in ultra-high salinity ranges and in the presence of high concentrations of Ca 2+ and Mg 2+ in alkaline solution.

Suggested Citation

  • Ewa Knapik & Grzegorz Rotko & Marta Marszałek & Marcin Piotrowski, 2023. "Comparative Study on Lithium Recovery with Ion-Selective Adsorbents and Extractants: Results of Multi-Stage Screening Test with the Use of Brine Simulated Solutions with Increasing Complexity," Energies, MDPI, vol. 16(7), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3149-:d:1112316
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3149/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3149/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vikström, Hanna & Davidsson, Simon & Höök, Mikael, 2013. "Lithium availability and future production outlooks," Applied Energy, Elsevier, vol. 110(C), pages 252-266.
    2. Laurence Kavanagh & Jerome Keohane & Guiomar Garcia Cabellos & Andrew Lloyd & John Cleary, 2018. "Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review," Resources, MDPI, vol. 7(3), pages 1-29, September.
    3. Grosjean, Camille & Miranda, Pamela Herrera & Perrin, Marion & Poggi, Philippe, 2012. "Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1735-1744.
    4. William T. Stringfellow & Patrick F. Dobson, 2021. "Technology for the Recovery of Lithium from Geothermal Brines," Energies, MDPI, vol. 14(20), pages 1-72, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiajia & Yue, Xiyan & Wang, Peifen & Yu, Tao & Du, Xiao & Hao, Xiaogang & Abudula, Abuliti & Guan, Guoqing, 2022. "Electrochemical technologies for lithium recovery from liquid resources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    3. Fernando Moreno-Brieva & Carlos Merino, 2020. "African international trade in the global value chain of lithium batteries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(6), pages 1031-1052, August.
    4. Simon, Bálint & Ziemann, Saskia & Weil, Marcel, 2015. "Potential metal requirement of active materials in lithium-ion battery cells of electric vehicles and its impact on reserves: Focus on Europe," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 300-310.
    5. János Szanyi & Ladislaus Rybach & Hawkar A. Abdulhaq, 2023. "Geothermal Energy and Its Potential for Critical Metal Extraction—A Review," Energies, MDPI, vol. 16(20), pages 1-28, October.
    6. Gil-Alana, Luis A. & Monge, Manuel, 2019. "Lithium: Production and estimated consumption. Evidence of persistence," Resources Policy, Elsevier, vol. 60(C), pages 198-202.
    7. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Foley, Aoife M. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Rooney, David, 2022. "Decarbonizing the ceramics industry: A systematic and critical review of policy options, developments and sociotechnical systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    8. Tokimatsu, Koji & Höök, Mikael & McLellan, Benjamin & Wachtmeister, Henrik & Murakami, Shinsuke & Yasuoka, Rieko & Nishio, Masahiro, 2018. "Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy," Applied Energy, Elsevier, vol. 225(C), pages 1158-1175.
    9. Calvo, Guiomar & Valero, Alicia & Valero, Antonio, 2017. "Assessing maximum production peak and resource availability of non-fuel mineral resources: Analyzing the influence of extractable global resources," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 208-217.
    10. Sverdrup, Harald Ulrik, 2016. "Modelling global extraction, supply, price and depletion of the extractable geological resources with the LITHIUM model," Resources, Conservation & Recycling, Elsevier, vol. 114(C), pages 112-129.
    11. Palacios, Jose-Luis & Calvo, Guiomar & Valero, Alicia & Valero, Antonio, 2018. "The cost of mineral depletion in Latin America: An exergoecology view," Resources Policy, Elsevier, vol. 59(C), pages 117-124.
    12. Daniele Stampatori & Pier Paolo Raimondi & Michel Noussan, 2020. "Li-Ion Batteries: A Review of a Key Technology for Transport Decarbonization," Energies, MDPI, vol. 13(10), pages 1-23, May.
    13. Wang, Xiao-Qing & Qin, Meng & Moldovan, Nicoleta-Claudia & Su, Chi-Wei, 2023. "Bubble behaviors in lithium price and the contagion effect: An industry chain perspective," Resources Policy, Elsevier, vol. 83(C).
    14. Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel, 2018. "Material bottlenecks in the future development of green technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 178-200.
    15. Monge, Manuel & Gil-Alana, Luis A., 2019. "Automobile components: Lithium and cobalt. Evidence of persistence," Energy, Elsevier, vol. 169(C), pages 489-495.
    16. Jones, Ben & Elliott, Robert J.R. & Nguyen-Tien, Viet, 2020. "The EV revolution: The road ahead for critical raw materials demand," Applied Energy, Elsevier, vol. 280(C).
    17. Zubi, Ghassan & Dufo-López, Rodolfo & Carvalho, Monica & Pasaoglu, Guzay, 2018. "The lithium-ion battery: State of the art and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 292-308.
    18. Xu, Jun & Liu, Binghe & Wang, Xinyi & Hu, Dayong, 2016. "Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies," Applied Energy, Elsevier, vol. 172(C), pages 180-189.
    19. Richa, Kirti & Babbitt, Callie W. & Gaustad, Gabrielle & Wang, Xue, 2014. "A future perspective on lithium-ion battery waste flows from electric vehicles," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 63-76.
    20. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3149-:d:1112316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.