IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v1y2012i1p23-33d22343.html
   My bibliography  Save this article

Resource Criticality and Commodity Production Projections

Author

Listed:
  • Damien Giurco

    (Institute for Sustainable Futures, University of Technology, Sydney, Ultimo 2007, Australia)

  • Steve Mohr

    (Institute for Sustainable Futures, University of Technology, Sydney, Ultimo 2007, Australia
    Department of Civil Engineering, Monash University, Clayton 3800, Australia)

  • Gavin Mudd

    (Department of Civil Engineering, Monash University, Clayton 3800, Australia)

  • Leah Mason

    (Institute for Sustainable Futures, University of Technology, Sydney, Ultimo 2007, Australia)

  • Timothy Prior

    (Institute for Sustainable Futures, University of Technology, Sydney, Ultimo 2007, Australia
    Center for Security Studies, ETH Zürich, Zuerich 8092, Switzerland)

Abstract

Resource criticality arising from peak production of primary ores is explored in this paper. We combine the Geologic Resource Supply-Demand Model of Mohr [1] to project future resource production for selected commodities in Australia, namely iron and coal which together represent around 50% of the value of total Australian exports as well as copper, gold and lithium. The projections (based on current estimates of ultimately recoverable reserves) indicate that peak production in Australia would occur for lithium in 2015; for gold in 2021; for copper in 2024; for iron in 2039 and for coal in 2060. The quantitative analysis is coupled with the criticality framework for peak minerals of Mason et al. [2] comprising (i) resource availability, (ii) societal resource addiction to commodity use, and (iii) alternatives such as dematerialization or substitution to assess the broader dimension s of peak minerals production for Australia.

Suggested Citation

  • Damien Giurco & Steve Mohr & Gavin Mudd & Leah Mason & Timothy Prior, 2012. "Resource Criticality and Commodity Production Projections," Resources, MDPI, vol. 1(1), pages 1-11, December.
  • Handle: RePEc:gam:jresou:v:1:y:2012:i:1:p:23-33:d:22343
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/1/1/23/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/1/1/23/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohr, S.H. & Evans, G.M., 2011. "Long term forecasting of natural gas production," Energy Policy, Elsevier, vol. 39(9), pages 5550-5560, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linbin Tang & Peng Wang & Zijie Ma & Stefan Pauliuk & Wei‐Qiang Chen & Tao Dai & Zipeng Lin, 2023. "Exploring the global trade networks of the tungsten supply chain: Insights into the physical and monetary mismatch among countries," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 323-335, February.
    2. Eko Sulistiyono & Sri Harjanto & Latifa Hanum Lalasari, 2022. "Separation of Magnesium and Lithium from Brine Water and Bittern Using Sodium Silicate Precipitation Agent," Resources, MDPI, vol. 11(10), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shangfeng Han & Baosheng Zhang & Xiaoyang Sun & Song Han & Mikael Höök, 2017. "China’s Energy Transition in the Power and Transport Sectors from a Substitution Perspective," Energies, MDPI, vol. 10(5), pages 1-25, April.
    2. Mediavilla, Margarita & de Castro, Carlos & Capellán, Iñigo & Javier Miguel, Luis & Arto, Iñaki & Frechoso, Fernando, 2013. "The transition towards renewable energies: Physical limits and temporal conditions," Energy Policy, Elsevier, vol. 52(C), pages 297-311.
    3. Xiaoqian Guo & Qiang Yan & Anjian Wang, 2017. "Assessment of Methods for Forecasting Shale Gas Supply in China Based on Economic Considerations," Energies, MDPI, vol. 10(11), pages 1-14, October.
    4. Potočnik, Primož & Soldo, Božidar & Šimunović, Goran & Šarić, Tomislav & Jeromen, Andrej & Govekar, Edvard, 2014. "Comparison of static and adaptive models for short-term residential natural gas forecasting in Croatia," Applied Energy, Elsevier, vol. 129(C), pages 94-103.
    5. Siavash Asiaban & Nezmin Kayedpour & Arash E. Samani & Dimitar Bozalakov & Jeroen D. M. De Kooning & Guillaume Crevecoeur & Lieven Vandevelde, 2021. "Wind and Solar Intermittency and the Associated Integration Challenges: A Comprehensive Review Including the Status in the Belgian Power System," Energies, MDPI, vol. 14(9), pages 1-41, May.
    6. Wang, Jianliang & Mohr, Steve & Feng, Lianyong & Liu, Huihui & Tverberg, Gail E., 2016. "Analysis of resource potential for China’s unconventional gas and forecast for its long-term production growth," Energy Policy, Elsevier, vol. 88(C), pages 389-401.
    7. Lin, Boqiang & Wang, Ting, 2012. "Forecasting natural gas supply in China: Production peak and import trends," Energy Policy, Elsevier, vol. 49(C), pages 225-233.
    8. Qiao, Weibiao & Liu, Wei & Liu, Enbin, 2021. "A combination model based on wavelet transform for predicting the difference between monthly natural gas production and consumption of U.S," Energy, Elsevier, vol. 235(C).
    9. Sgouris Sgouridis & Denes Csala, 2014. "A Framework for Defining Sustainable Energy Transitions: Principles, Dynamics, and Implications," Sustainability, MDPI, vol. 6(5), pages 1-22, May.
    10. McGlade, Christophe & Speirs, Jamie & Sorrell, Steve, 2013. "Methods of estimating shale gas resources – Comparison, evaluation and implications," Energy, Elsevier, vol. 59(C), pages 116-125.
    11. Darda, Md Abud & Guseo, Renato & Mortarino, Cinzia, 2015. "Nonlinear production path and an alternative reserves estimate for South Asian natural gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 654-664.
    12. Xie, Minghua & Wei, Xiaonan & Chen, Chuanglian & Sun, Chuanwang, 2022. "China's natural gas production peak and energy return on investment (EROI): From the perspective of energy security," Energy Policy, Elsevier, vol. 164(C).
    13. Kannika Duangnate & James W. Mjelde, 2020. "Prequential forecasting in the presence of structure breaks in natural gas spot markets," Empirical Economics, Springer, vol. 59(5), pages 2363-2384, November.
    14. Wang, Jianliang & Feng, Lianyong & Steve, Mohr & Tang, Xu & Gail, Tverberg E. & Mikael, Höök, 2015. "China's unconventional oil: A review of its resources and outlook for long-term production," Energy, Elsevier, vol. 82(C), pages 31-42.
    15. Kai Whiting & Luis Gabriel Carmona & Angeles Carrasco & Tânia Sousa, 2017. "Exergy Replacement Cost of Fossil Fuels: Closing the Carbon Cycle," Energies, MDPI, vol. 10(7), pages 1-21, July.
    16. Wang, Ting & Lin, Boqiang, 2014. "Impacts of unconventional gas development on China׳s natural gas production and import," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 546-554.
    17. Voudouris, Vlasios & Matsumoto, Ken'ichi & Sedgwick, John & Rigby, Robert & Stasinopoulos, Dimitrios & Jefferson, Michael, 2014. "Exploring the production of natural gas through the lenses of the ACEGES model," Energy Policy, Elsevier, vol. 64(C), pages 124-133.
    18. Sen, Doruk & Hamurcuoglu, K. Irem & Ersoy, Melisa Z. & Tunç, K.M. Murat & Günay, M. Erdem, 2023. "Forecasting long-term world annual natural gas production by machine learning," Resources Policy, Elsevier, vol. 80(C).
    19. Northey, S. & Mohr, S. & Mudd, G.M. & Weng, Z. & Giurco, D., 2014. "Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 190-201.
    20. McGlade, Christophe & Speirs, Jamie & Sorrell, Steve, 2013. "Unconventional gas – A review of regional and global resource estimates," Energy, Elsevier, vol. 55(C), pages 571-584.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:1:y:2012:i:1:p:23-33:d:22343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.