IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v27y2023i2p457-475.html
   My bibliography  Save this article

A review of methods to trace material flows into final products in dynamic material flow analysis: Comparative application of six methods to the United States and EXIOBASE3 regions, Part 2

Author

Listed:
  • Jan Streeck
  • Hanspeter Wieland
  • Stefan Pauliuk
  • Barbara Plank
  • Kenichi Nakajima
  • Dominik Wiedenhofer

Abstract

Modeling pathways toward sustainable production and consumption requires improved spatio‐temporal and material coverage of end‐use product stocks. Momentarily, studies on inflow‐driven, dynamic material flow analysis (dMFA) extrapolate scarce information on material end‐use shares (i.e., ratios that split economy‐wide material consumption to different end‐use products) for single countries and years across longer time periods and global regions. Therefore, in part 1 of this work, we reviewed five methods to derive material end‐use shares which use industry shipment data in physical units and monetary input–output tables (MIOTs). Herein, we comparatively apply these methods to the United States, drawing on detailed national data, as well as the multi‐regional input–output model EXIOBASE3. To better match MIOT and dMFA system definitions, we propose the end‐use transfer method, which re‐routes specific intermediate outputs to final demand in MIOTs. In closing, we conclude on 12 points for improved end‐use shares. We find mixed results regarding the fit between end‐use shares derived from industry shipments and MIOTs: for detailed national data, we find good fit for some materials (e.g., aluminum), while others deviate strongly (e.g., steel). In many cases, the temporal trend of MIOT‐derived end‐use shares roughly agrees with industry shipments. For EXIOBASE3, we find good fit for some countries and materials, but substantial mismatches for others. Despite mixed results, combining MIOT‐based end‐use shares with industry shipments and auxiliary country‐level data could enable improved temporal, geographical, and end‐use resolution. However, the scarcity, documentation, and quality of input data are key limitations for more accurate and detailed end‐use shares. This article met the requirements for a gold‐gold data openness badge described at http://jie.click/badges.

Suggested Citation

  • Jan Streeck & Hanspeter Wieland & Stefan Pauliuk & Barbara Plank & Kenichi Nakajima & Dominik Wiedenhofer, 2023. "A review of methods to trace material flows into final products in dynamic material flow analysis: Comparative application of six methods to the United States and EXIOBASE3 regions, Part 2," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 457-475, April.
  • Handle: RePEc:bla:inecol:v:27:y:2023:i:2:p:457-475
    DOI: 10.1111/jiec.13379
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13379
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13379?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Owen, Anne & Brockway, Paul & Brand-Correa, Lina & Bunse, Lukas & Sakai, Marco & Barrett, John, 2017. "Energy consumption-based accounts: A comparison of results using different energy extension vectors," Applied Energy, Elsevier, vol. 190(C), pages 464-473.
    2. Faye Duchin & Stephen H. Levine, 2013. "Embodied Resource Flows in a Global Economy," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 65-78, February.
    3. Helmut Haberl & Dominik Wiedenhofer & Stefan Pauliuk & Fridolin Krausmann & Daniel B. Müller & Marina Fischer-Kowalski, 2019. "Contributions of sociometabolic research to sustainability science," Nature Sustainability, Nature, vol. 2(3), pages 173-184, March.
    4. Ryosuke Yokoi & Jun Nakatani & Yuichi Moriguchi, 2018. "An Extended Model for Tracking Accumulation Pathways of Materials Using Input–Output Tables: Application to Copper Flows in Japan," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    5. Erik Dietzenbacher & Bob van Burken & Yasushi Kondo, 2019. "Hypothetical extractions from a global perspective," Economic Systems Research, Taylor & Francis Journals, vol. 31(4), pages 505-519, October.
    6. Wiedenhofer, Dominik & Fishman, Tomer & Lauk, Christian & Haas, Willi & Krausmann, Fridolin, 2019. "Integrating Material Stock Dynamics Into Economy-Wide Material Flow Accounting: Concepts, Modelling, and Global Application for 1900–2050," Ecological Economics, Elsevier, vol. 156(C), pages 121-133.
    7. Faye Duchin & Stephen H. Levine, 2010. "Embodied Resource Flows and Product Flows," Journal of Industrial Ecology, Yale University, vol. 14(4), pages 586-597, August.
    8. Hanspeter Wieland & Stefan Giljum & Nina Eisenmenger & Dominik Wiedenhofer & Martin Bruckner & Anke Schaffartzik & Anne Owen, 2020. "Supply versus use designs of environmental extensions in input–output analysis: Conceptual and empirical implications for the case of energy," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 548-563, June.
    9. Pauliuk, Stefan & Wang, Tao & Müller, Daniel B., 2013. "Steel all over the world: Estimating in-use stocks of iron for 200 countries," Resources, Conservation & Recycling, Elsevier, vol. 71(C), pages 22-30.
    10. Stefan Pauliuk & Niko Heeren & Peter Berrill & Tomer Fishman & Andrea Nistad & Qingshi Tu & Paul Wolfram & Edgar G. Hertwich, 2021. "Global scenarios of resource and emission savings from material efficiency in residential buildings and cars," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Streeck & Stefan Pauliuk & Hanspeter Wieland & Dominik Wiedenhofer, 2023. "A review of methods to trace material flows into final products in dynamic material flow analysis: From industry shipments in physical units to monetary input–output tables, Part 1," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 436-456, April.
    2. Yang, Xue & Zhang, Chao & Li, Xinyi & Cao, Zhi & Wang, Peng & Wang, Heming & Liu, Gang & Xia, Ziqian & Zhu, Dajian & Chen, Wei-Qiang, 2024. "Multinational dynamic steel cycle analysis reveals sequential decoupling between material use and economic growth," Ecological Economics, Elsevier, vol. 217(C).
    3. zu Ermgassen, Sophus & Drewniok, Michal & Bull, Joseph & Walker, Christine Corlet & Mancini, Mattia & Ryan-Collins, Josh & Serrenho, André Cabrera, 2022. "A home for all within planetary boundaries: pathways for meeting England’s housing needs without transgressing national climate and biodiversity goals," OSF Preprints 5kxce, Center for Open Science.
    4. Mathieu, Valentin & Roda, Jean-Marc, 2023. "A meta-analysis on wood trade flow modeling concepts," Forest Policy and Economics, Elsevier, vol. 149(C).
    5. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    6. Virág, Doris & Wiedenhofer, Dominik & Baumgart, André & Matej, Sarah & Krausmann, Fridolin & Min, Jihoon & Rao, Narasimha D. & Haberl, Helmut, 2022. "How much infrastructure is required to support decent mobility for all? An exploratory assessment," Ecological Economics, Elsevier, vol. 200(C).
    7. Dominik Noll & Christian Lauk & Willi Haas & Simron Jit Singh & Panos Petridis & Dominik Wiedenhofer, 2022. "The sociometabolic transition of a small Greek island: Assessing stock dynamics, resource flows, and material circularity from 1929 to 2019," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 577-591, April.
    8. Franz Schug & David Frantz & Dominik Wiedenhofer & Helmut Haberl & Doris Virág & Sebastian van der Linden & Patrick Hostert, 2023. "High‐resolution mapping of 33 years of material stock and population growth in Germany using Earth Observation data," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 110-124, February.
    9. Plank, Christina & Liehr, Stefan & Hummel, Diana & Wiedenhofer, Dominik & Haberl, Helmut & Görg, Christoph, 2021. "Doing more with less: Provisioning systems and the transformation of the stock-flow-service nexus," Ecological Economics, Elsevier, vol. 187(C).
    10. Whiting, Kai & Carmona, Luis Gabriel & Brand-Correa, Lina & Simpson, Edward, 2020. "Illumination as a material service: A comparison between Ancient Rome and early 19th century London," Ecological Economics, Elsevier, vol. 169(C).
    11. Kaixin Huang & Matthew J. Eckelman, 2022. "Appending material flows to the National Energy Modeling System (NEMS) for projecting the physical economy of the United States," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 294-308, February.
    12. Ariel L. Wirkierman & Monica Bianchi & Anna Torriero, 2022. "Leontief Meets Markov: Sectoral Vulnerabilities Through Circular Connectivity," Networks and Spatial Economics, Springer, vol. 22(3), pages 659-690, September.
    13. Dorninger, Christian & Hornborg, Alf & Abson, David J. & von Wehrden, Henrik & Schaffartzik, Anke & Giljum, Stefan & Engler, John-Oliver & Feller, Robert L. & Hubacek, Klaus & Wieland, Hanspeter, 2021. "Global patterns of ecologically unequal exchange: Implications for sustainability in the 21st century," Ecological Economics, Elsevier, vol. 179(C).
    14. David Frantz & Franz Schug & Dominik Wiedenhofer & André Baumgart & Doris Virág & Sam Cooper & Camila Gómez-Medina & Fabian Lehmann & Thomas Udelhoven & Sebastian Linden & Patrick Hostert & Helmut Hab, 2023. "Unveiling patterns in human dominated landscapes through mapping the mass of US built structures," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Glenn A. Aguilar-Hernandez & Carlos Pablo Sigüenza-Sanchez & Franco Donati & João F. D. Rodrigues & Arnold Tukker, 2018. "Assessing circularity interventions: a review of EEIOA-based studies," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-24, December.
    16. zu Ermgassen, Sophus O.S.E. & Drewniok, Michal P. & Bull, Joseph W. & Corlet Walker, Christine M. & Mancini, Mattia & Ryan-Collins, Josh & Cabrera Serrenho, André, 2022. "A home for all within planetary boundaries: Pathways for meeting England's housing needs without transgressing national climate and biodiversity goals," Ecological Economics, Elsevier, vol. 201(C).
    17. Jean-Yves Courtonne & Pierre-Yves Longaretti & Julien Alapetite & Denis Dupré, 2015. "Environmental pressures embodied in the French cereals supply chain," Working Papers hal-01150067, HAL.
    18. Hanspeter Wieland & Manfred Lenzen & Arne Geschke & Jacob Fry & Dominik Wiedenhofer & Nina Eisenmenger & Johannes Schenk & Stefan Giljum, 2022. "The PIOLab: Building global physical input–output tables in a virtual laboratory," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 683-703, June.
    19. Pauliuk, Stefan & Kondo, Yasushi & Nakamura, Shinichiro & Nakajima, Kenichi, 2017. "Regional distribution and losses of end-of-life steel throughout multiple product life cycles—Insights from the global multiregional MaTrace model," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 84-93.
    20. Haberl, Helmut & Schmid, Martin & Haas, Willi & Wiedenhofer, Dominik & Rau, Henrike & Winiwarter, Verena, 2021. "Stocks, flows, services and practices: Nexus approaches to sustainable social metabolism," Ecological Economics, Elsevier, vol. 182(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:27:y:2023:i:2:p:457-475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.