IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i9p956-d543032.html
   My bibliography  Save this article

On the Cumulants of the First Passage Time of the Inhomogeneous Geometric Brownian Motion

Author

Listed:
  • Elvira Di Nardo

    (Dipartimento di Matematica ‘G. Peano’, Università degli Studi di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
    These authors contributed equally to this work.)

  • Giuseppe D’Onofrio

    (Dipartimento di Matematica ‘G. Peano’, Università degli Studi di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
    These authors contributed equally to this work.)

Abstract

We consider the problem of the first passage time T of an inhomogeneous geometric Brownian motion through a constant threshold, for which only limited results are available in the literature. In the case of a strong positive drift, we get an approximation of the cumulants of T of any order using the algebra of formal power series applied to an asymptotic expansion of its Laplace transform. The interest in the cumulants is due to their connection with moments and the accounting of some statistical properties of the density of T like skewness and kurtosis. Some case studies coming from neuronal modeling with reversal potential and mean reversion models of financial markets show the goodness of the approximation of the first moment of T . However hints on the evaluation of higher order moments are also given, together with considerations on the numerical performance of the method.

Suggested Citation

  • Elvira Di Nardo & Giuseppe D’Onofrio, 2021. "On the Cumulants of the First Passage Time of the Inhomogeneous Geometric Brownian Motion," Mathematics, MDPI, vol. 9(9), pages 1-17, April.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:956-:d:543032
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/9/956/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/9/956/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julie Lyng Forman & Michael Sørensen, 2008. "The Pearson Diffusions: A Class of Statistically Tractable Diffusion Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 438-465, September.
    2. Insley, Margaret, 2002. "A Real Options Approach to the Valuation of a Forestry Investment," Journal of Environmental Economics and Management, Elsevier, vol. 44(3), pages 471-492, November.
    3. Sarkar, Sudipto, 2003. "The effect of mean reversion on investment under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 28(2), pages 377-396, November.
    4. Di Nardo, Elvira & D’Onofrio, Giuseppe, 2021. "A cumulant approach for the first-passage-time problem of the Feller square-root process," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    5. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    6. Brennan, Michael J. & Schwartz, Eduardo S., 1979. "A continuous time approach to the pricing of bonds," Journal of Banking & Finance, Elsevier, vol. 3(2), pages 133-155, July.
    7. Feng, Runhuan & Jiang, Pingping & Volkmer, Hans, 2021. "Geometric Brownian motion with affine drift and its time-integral," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    8. Luca Capriotti & Yupeng Jiang & Gaukhar Shaimerdenova, 2019. "Approximation Methods For Inhomogeneous Geometric Brownian Motion," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-16, March.
    9. Michael J. Brennan and Eduardo S. Schwartz., 1979. "A Continuous-Time Approach to the Pricing of Bonds," Research Program in Finance Working Papers 85, University of California at Berkeley.
    10. Barone-Adesi, Giovanni & Rasmussen, Henrik & Ravanelli, Claudia, 2005. "An option pricing formula for the GARCH diffusion model," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 287-310, April.
    11. Vadim Linetsky, 2004. "The Spectral Decomposition Of The Option Value," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 7(03), pages 337-384.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahdavi, Mahnaz, 2008. "A comparison of international short-term rates under no arbitrage condition," Global Finance Journal, Elsevier, vol. 18(3), pages 303-318.
    2. Tse, Y.K., 1995. "Interest rate models and option pricing: A sensitivity analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 39(3), pages 431-436.
    3. Li, Lingfei & Linetsky, Vadim, 2014. "Optimal stopping in infinite horizon: An eigenfunction expansion approach," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 122-128.
    4. David K. Backus & Stanley E. Zin, 1994. "Reverse Engineering the Yield Curve," Working Papers 94-09, New York University, Leonard N. Stern School of Business, Department of Economics.
    5. Kozicki, Sharon & Tinsley, P. A., 2001. "Shifting endpoints in the term structure of interest rates," Journal of Monetary Economics, Elsevier, vol. 47(3), pages 613-652, June.
    6. repec:uts:finphd:40 is not listed on IDEAS
    7. Hiraki, Takato & Takezawa, Nobuya, 1997. "How sensitive is short-term Japanese interest rate volatility to the level of the interest rate?," Economics Letters, Elsevier, vol. 56(3), pages 325-332, November.
    8. Boero, G. & Torricelli, C., 1996. "A comparative evaluation of alternative models of the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 93(1), pages 205-223, August.
    9. David Bolder, 2001. "Affine Term-Structure Models: Theory and Implementation," Staff Working Papers 01-15, Bank of Canada.
    10. repec:wyi:journl:002108 is not listed on IDEAS
    11. Mark Trede & Bernd Wilfling, 2007. "Estimating exchange rate dynamics with diffusion processes: an application to Greek EMU data," Empirical Economics, Springer, vol. 33(1), pages 23-39, July.
    12. Jan Baldeaux & Fung & Katja Ignatieva & Eckhard Platen, 2015. "A Hybrid Model for Pricing and Hedging of Long-dated Bonds," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(4), pages 366-398, September.
    13. K. Nowman, 2003. "A Note on Gaussian Estimation of the CKLS and CIR Models with Feedback Effects for Japan," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 10(2), pages 275-279, September.
    14. Broze, Laurence & Scaillet, Olivier & Zakoian, Jean-Michel, 1995. "Testing for continuous-time models of the short-term interest rate," Journal of Empirical Finance, Elsevier, vol. 2(3), pages 199-223, September.
    15. Dette, Holger & Podolskij, Mark, 2008. "Testing the parametric form of the volatility in continuous time diffusion models--a stochastic process approach," Journal of Econometrics, Elsevier, vol. 143(1), pages 56-73, March.
    16. K. Ben Nowman & Burak Saltoglu, 2003. "An empirical comparison of interest rates using an interest rate model and nonparametric methods," Applied Economics Letters, Taylor & Francis Journals, vol. 10(10), pages 643-645.
    17. Bakshi, Gurdip & Chen, Zhiwu, 2005. "Stock valuation in dynamic economies," Journal of Financial Markets, Elsevier, vol. 8(2), pages 111-151, May.
    18. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.
    19. Jiang, George J., 1997. "A generalized one-factor term structure model and pricing of interest rate derivative securities," Research Report 97A34, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    20. Tigran Poghosyan & Evžen KoÄenda & Petr ZemÄik, 2008. "Modeling Foreign Exchange Risk Premium in Armenia," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 44(1), pages 41-61, January.
    21. Cortazar, Gonzalo & Schwartz, Eduardo S. & Naranjo, Lorezo, 2003. "Term Structure Estimation in Low-Frequency Transaction Markets: A Kalman Filter Approach with Incomplete Panel-Data," University of California at Los Angeles, Anderson Graduate School of Management qt56h775cz, Anderson Graduate School of Management, UCLA.
    22. Byers, S. L. & Nowman, K. B., 1998. "Forecasting U.K. and U.S. interest rates using continuous time term structure models," International Review of Financial Analysis, Elsevier, vol. 7(3), pages 191-206.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:956-:d:543032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.