IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v85y2014icp122-128.html
   My bibliography  Save this article

Optimal stopping in infinite horizon: An eigenfunction expansion approach

Author

Listed:
  • Li, Lingfei
  • Linetsky, Vadim

Abstract

We develop an eigenfunction expansion based value iteration algorithm to solve discrete time infinite horizon optimal stopping problems for a rich class of Markov processes that are important in applications. We provide convergence analysis for the value function and the exercise boundary, and derive easily computable error bounds for value iterations. As an application we develop a fast and accurate algorithm for pricing callable perpetual bonds under the CIR short rate model.

Suggested Citation

  • Li, Lingfei & Linetsky, Vadim, 2014. "Optimal stopping in infinite horizon: An eigenfunction expansion approach," Statistics & Probability Letters, Elsevier, vol. 85(C), pages 122-128.
  • Handle: RePEc:eee:stapro:v:85:y:2014:i:c:p:122-128
    DOI: 10.1016/j.spl.2013.11.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715213003982
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2013.11.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brennan, Michael J. & Schwartz, Eduardo S., 1982. "An Equilibrium Model of Bond Pricing and a Test of Market Efficiency," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(3), pages 301-329, September.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. Lingfei Li & Vadim Linetsky, 2013. "Optimal Stopping and Early Exercise: An Eigenfunction Expansion Approach," Operations Research, INFORMS, vol. 61(3), pages 625-643, June.
    4. Savas Dayanik, 2008. "Optimal Stopping of Linear Diffusions with Random Discounting," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 645-661, August.
    5. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    6. Dayanik, Savas & Karatzas, Ioannis, 2003. "On the optimal stopping problem for one-dimensional diffusions," Stochastic Processes and their Applications, Elsevier, vol. 107(2), pages 173-212, October.
    7. Vadim Linetsky, 2004. "The Spectral Decomposition Of The Option Value," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 7(03), pages 337-384.
    8. Dmitry Davydov & Vadim Linetsky, 2003. "Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach," Operations Research, INFORMS, vol. 51(2), pages 185-209, April.
    9. Dongjae Lim & Lingfei Li & Vadim Linetsky, 2012. "Evaluating Callable and Putable Bonds: An Eigenfunction Expansion Approach," Papers 1206.5046, arXiv.org.
    10. Brennan, Michael J. & Schwartz, Eduardo S., 1979. "A continuous time approach to the pricing of bonds," Journal of Banking & Finance, Elsevier, vol. 3(2), pages 133-155, July.
    11. Christensen, Sören & Salminen, Paavo & Ta, Bao Quoc, 2013. "Optimal stopping of strong Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 1138-1159.
    12. Dybvig, Philip H & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1996. "Long Forward and Zero-Coupon Rates Can Never Fall," The Journal of Business, University of Chicago Press, vol. 69(1), pages 1-25, January.
    13. Michael J. Brennan and Eduardo S. Schwartz., 1979. "A Continuous-Time Approach to the Pricing of Bonds," Research Program in Finance Working Papers 85, University of California at Berkeley.
    14. Lim, Dongjae & Li, Lingfei & Linetsky, Vadim, 2012. "Evaluating callable and putable bonds: An eigenfunction expansion approach," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1888-1908.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Li & Lingfei Li & Rafael Mendoza-Arriaga, 2016. "Additive subordination and its applications in finance," Finance and Stochastics, Springer, vol. 20(3), pages 589-634, July.
    2. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2019. "Gauge transformations in the dual space, and pricing and estimation in the long run in affine jump-diffusion models," Papers 1912.06948, arXiv.org, revised Dec 2019.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingfei Li & Vadim Linetsky, 2015. "Discretely monitored first passage problems and barrier options: an eigenfunction expansion approach," Finance and Stochastics, Springer, vol. 19(4), pages 941-977, October.
    2. repec:zbw:bofrdp:2002_015 is not listed on IDEAS
    3. Lingfei Li & Vadim Linetsky, 2013. "Optimal Stopping and Early Exercise: An Eigenfunction Expansion Approach," Operations Research, INFORMS, vol. 61(3), pages 625-643, June.
    4. Rafael Mendoza-Arriaga & Vadim Linetsky, 2014. "Time-changed CIR default intensities with two-sided mean-reverting jumps," Papers 1403.5402, arXiv.org.
    5. Groh, Alexander P., 2004. "Risikoadjustierte Performance von Private Equity-Investitionen," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 21382, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    6. Jing Li & Lingfei Li & Rafael Mendoza-Arriaga, 2016. "Additive subordination and its applications in finance," Finance and Stochastics, Springer, vol. 20(3), pages 589-634, July.
    7. Iftekhar Hasan & Sudipto Sarkar, 2002. "Banks' option to lend, interest rate sensitivity, and credit availability," Review of Derivatives Research, Springer, vol. 5(3), pages 213-250, October.
    8. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    9. Kozicki, Sharon & Tinsley, P. A., 2001. "Shifting endpoints in the term structure of interest rates," Journal of Monetary Economics, Elsevier, vol. 47(3), pages 613-652, June.
    10. repec:uts:finphd:40 is not listed on IDEAS
    11. Svetlana Boyarchenko & Sergei Levendorskiu{i}, 2019. "Gauge transformations in the dual space, and pricing and estimation in the long run in affine jump-diffusion models," Papers 1912.06948, arXiv.org, revised Dec 2019.
    12. Boero, G. & Torricelli, C., 1996. "A comparative evaluation of alternative models of the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 93(1), pages 205-223, August.
    13. Bailey, Warren, 1989. "Applying a Stochastic Model to the Tenn Structure of Interest Rates in Malaysia," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 20(December), pages 3-17.
    14. Ram Bhar & Carl Chiarella & Thuy-Duong To, 2004. "Estimating the Volatility Structure of an Arbitrage-Free Interest Rate Model Via the Futures Markets," Finance 0409003, University Library of Munich, Germany.
    15. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.
    16. Josheski Dushko & Apostolov Mico, 2021. "Equilibrium Short-Rate Models Vs No-Arbitrage Models: Literature Review and Computational Examples," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 25(3), pages 42-71, September.
    17. Peterson, Sandra & Stapleton, Richard C. & Subrahmanyam, Marti G., 2003. "A Multifactor Spot Rate Model for the Pricing of Interest Rate Derivatives," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(4), pages 847-880, December.
    18. Schulze, Klaas, 2008. "Asymptotic Maturity Behavior of the Term Structure," Bonn Econ Discussion Papers 11/2008, University of Bonn, Bonn Graduate School of Economics (BGSE).
    19. Vetzal, Kenneth R., 1997. "Stochastic volatility, movements in short term interest rates, and bond option values," Journal of Banking & Finance, Elsevier, vol. 21(2), pages 169-196, February.
    20. Zhigang Tong & Allen Liu, 2018. "Analytical pricing of discrete arithmetic Asian options under generalized CIR process with time change," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-21, March.
    21. Ball, Clifford A. & Torous, Walter N., 1996. "Unit roots and the estimation of interest rate dynamics," Journal of Empirical Finance, Elsevier, vol. 3(2), pages 215-238, June.
    22. Christopher F. Baum & Olin Liu, 1994. "An Alternative Strategy for Estimation of a Nonlinear Model of the Term Structure of Interest Rates," Boston College Working Papers in Economics 275, Boston College Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:85:y:2014:i:c:p:122-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.