IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i6p642-d519069.html
   My bibliography  Save this article

Using First-Passage Times to Analyze Tumor Growth Delay

Author

Listed:
  • Patricia Román-Román

    (Departamento de Estadística e Investigación Operativa, Facultad de Ciencias, Universidad de Granada, Avenida Fuente Nueva s/n, 18071 Granada, Spain
    Instituto de Matemáticas, Universidad de Granada, Calle Ventanilla 11, 18001 Granada, Spain
    These authors contributed equally to this work.)

  • Sergio Román-Román

    (Département de Recherche Translationnelle, Institut Curie, CEDEX 05, 75248 Paris, France
    These authors contributed equally to this work.)

  • Juan José Serrano-Pérez

    (Departamento de Estadística e Investigación Operativa, Facultad de Ciencias, Universidad de Granada, Avenida Fuente Nueva s/n, 18071 Granada, Spain
    These authors contributed equally to this work.)

  • Francisco Torres-Ruiz

    (Departamento de Estadística e Investigación Operativa, Facultad de Ciencias, Universidad de Granada, Avenida Fuente Nueva s/n, 18071 Granada, Spain
    Instituto de Matemáticas, Universidad de Granada, Calle Ventanilla 11, 18001 Granada, Spain
    These authors contributed equally to this work.)

Abstract

A central aspect of in vivo experiments with anticancer therapies is the comparison of the effect of different therapies, or doses of the same therapeutic agent, on tumor growth. One of the most popular clinical endpoints is tumor growth delay, which measures the effect of treatment on the time required for tumor volume to reach a specific value. This effect has been analyzed through a variety of statistical methods: conventional descriptive analysis, linear regression, Cox regression, etc. We propose a new approach based on stochastic modeling of tumor growth and the study of first-passage time variables. This approach allows us to prove that the time required for tumor volume to reach a specific value must be determined empirically as the average of the times required for the volume of individual tumors to reach said value instead of the time required for the average volume of the tumors to reach the value of interest. In addition, we define several measures in random environments to compare the time required for the tumor volume to multiply k times its initial volume in control, as well as treated groups, and the usefulness of these measures is illustrated by means of an application to real data.

Suggested Citation

  • Patricia Román-Román & Sergio Román-Román & Juan José Serrano-Pérez & Francisco Torres-Ruiz, 2021. "Using First-Passage Times to Analyze Tumor Growth Delay," Mathematics, MDPI, vol. 9(6), pages 1-14, March.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:6:p:642-:d:519069
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/6/642/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/6/642/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patricia Román-Román & Juan José Serrano-Pérez & Francisco Torres-Ruiz, 2018. "Some Notes about Inference for the Lognormal Diffusion Process with Exogenous Factors," Mathematics, MDPI, vol. 6(5), pages 1-13, May.
    2. Román, P. & Serrano, J.J. & Torres, F., 2008. "First-passage-time location function: Application to determine first-passage-time densities in diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 4132-4146, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Barrera & Patricia Román-Román & Juan José Serrano-Pérez & Francisco Torres-Ruiz, 2021. "Two Multi-Sigmoidal Diffusion Models for the Study of the Evolution of the COVID-19 Pandemic," Mathematics, MDPI, vol. 9(19), pages 1-29, September.
    2. Ana García-Burgos & Paola Paraggio & Desirée Romero-Molina & Nuria Rico-Castro, 2024. "Inference with Non-Homogeneous Lognormal Diffusion Processes Conditioned on Nearest Neighbor," Mathematics, MDPI, vol. 12(23), pages 1-23, November.
    3. Antonio Di Crescenzo & Paola Paraggio & Patricia Román-Román & Francisco Torres-Ruiz, 2023. "Statistical analysis and first-passage-time applications of a lognormal diffusion process with multi-sigmoidal logistic mean," Statistical Papers, Springer, vol. 64(5), pages 1391-1438, October.
    4. Pramesti Getut, 2023. "Parameter least-squares estimation for time-inhomogeneous Ornstein–Uhlenbeck process," Monte Carlo Methods and Applications, De Gruyter, vol. 29(1), pages 1-32, March.
    5. Giorno, Virginia & Nobile, Amelia G., 2022. "On some integral equations for the evaluation of first-passage-time densities of time-inhomogeneous birth-death processes," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    6. Eva María Ramos-Ábalos & Ramón Gutiérrez-Sánchez & Ahmed Nafidi, 2020. "Powers of the Stochastic Gompertz and Lognormal Diffusion Processes, Statistical Inference and Simulation," Mathematics, MDPI, vol. 8(4), pages 1-13, April.
    7. Antonio Barrera & Patricia Román-Román & Francisco Torres-Ruiz, 2020. "Two Stochastic Differential Equations for Modeling Oscillabolastic-Type Behavior," Mathematics, MDPI, vol. 8(2), pages 1-20, January.
    8. Antonio Barrera & Patricia Román-Román & Francisco Torres-Ruiz, 2021. "Hyperbolastic Models from a Stochastic Differential Equation Point of View," Mathematics, MDPI, vol. 9(16), pages 1-18, August.
    9. Patricia Román-Román & Juan José Serrano-Pérez & Francisco Torres-Ruiz, 2019. "A Note on Estimation of Multi-Sigmoidal Gompertz Functions with Random Noise," Mathematics, MDPI, vol. 7(6), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:6:p:642-:d:519069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.