IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i23p3703-d1529986.html
   My bibliography  Save this article

Inference with Non-Homogeneous Lognormal Diffusion Processes Conditioned on Nearest Neighbor

Author

Listed:
  • Ana García-Burgos

    (Departamento de Estadística e IO, Universidad de Granada, 18012 Granada, Spain)

  • Paola Paraggio

    (Dipartimento di Matematica, Università di Salerno, 84084 Fisciano, Italy)

  • Desirée Romero-Molina

    (Departamento de Estadística e IO, Universidad de Granada, 18012 Granada, Spain)

  • Nuria Rico-Castro

    (Departamento de Estadística e IO, Universidad de Granada, 18012 Granada, Spain)

Abstract

In this work, we approach the forecast problem for a general non-homogeneous diffusion process over time with a different perspective from the classical one. We study the main characteristic functions as mean, mode, and α -quantiles conditioned on a future time, not conditioned on the past (as is normally the case), and we observe the specific formula in some interesting particular cases, such as Gompertz, logistic, or Bertalanffy diffusion processes, among others. This study aims to enhance classical inference methods when we need to impute data based on available information, past or future. We develop a simulation and obtain a dataset that is closer to reality, where there is no regularity in the number or timing of observations, to extend the traditional inference method. For such data, we propose using characteristic functions conditioned on the past or the future, depending on the closest point at which we aim to perform the imputation. The proposed inference procedure greatly reduces imputation errors in the simulated dataset.

Suggested Citation

  • Ana García-Burgos & Paola Paraggio & Desirée Romero-Molina & Nuria Rico-Castro, 2024. "Inference with Non-Homogeneous Lognormal Diffusion Processes Conditioned on Nearest Neighbor," Mathematics, MDPI, vol. 12(23), pages 1-23, November.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3703-:d:1529986
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/23/3703/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/23/3703/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patricia Román-Román & Juan José Serrano-Pérez & Francisco Torres-Ruiz, 2018. "Some Notes about Inference for the Lognormal Diffusion Process with Exogenous Factors," Mathematics, MDPI, vol. 6(5), pages 1-13, May.
    2. Román-Román, P. & Torres-Ruiz, F., 2015. "A stochastic model related to the Richards-type growth curve. Estimation by means of simulated annealing and variable neighborhood search," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 579-598.
    3. Antonio Di Crescenzo & Paola Paraggio & Serena Spina, 2023. "Stochastic Growth Models for the Spreading of Fake News," Mathematics, MDPI, vol. 11(16), pages 1-23, August.
    4. Antonio Di Crescenzo & Paola Paraggio & Patricia Román-Román & Francisco Torres-Ruiz, 2023. "Statistical analysis and first-passage-time applications of a lognormal diffusion process with multi-sigmoidal logistic mean," Statistical Papers, Springer, vol. 64(5), pages 1391-1438, October.
    5. Arne Henningsen & Ott Toomet, 2011. "maxLik: A package for maximum likelihood estimation in R," Computational Statistics, Springer, vol. 26(3), pages 443-458, September.
    6. Román, P. & Serrano, J.J. & Torres, F., 2008. "First-passage-time location function: Application to determine first-passage-time densities in diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 4132-4146, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Barrera & Patricia Román-Román & Juan José Serrano-Pérez & Francisco Torres-Ruiz, 2021. "Two Multi-Sigmoidal Diffusion Models for the Study of the Evolution of the COVID-19 Pandemic," Mathematics, MDPI, vol. 9(19), pages 1-29, September.
    2. Antonio Di Crescenzo & Paola Paraggio & Patricia Román-Román & Francisco Torres-Ruiz, 2023. "Statistical analysis and first-passage-time applications of a lognormal diffusion process with multi-sigmoidal logistic mean," Statistical Papers, Springer, vol. 64(5), pages 1391-1438, October.
    3. Patricia Román-Román & Sergio Román-Román & Juan José Serrano-Pérez & Francisco Torres-Ruiz, 2021. "Using First-Passage Times to Analyze Tumor Growth Delay," Mathematics, MDPI, vol. 9(6), pages 1-14, March.
    4. Antonio Barrera & Patricia Román-Román & Francisco Torres-Ruiz, 2021. "Hyperbolastic Models from a Stochastic Differential Equation Point of View," Mathematics, MDPI, vol. 9(16), pages 1-18, August.
    5. Maness, Michael & Cirillo, Cinzia, 2016. "An indirect latent informational conformity social influence choice model: Formulation and case study," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 75-101.
    6. John-Fritz Thony & Jean Vaillant, 2022. "Parameter Estimation for a Fractional Black–Scholes Model with Jumps from Discrete Time Observations," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    7. Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
    8. Manisera, Marica & Zuccolotto, Paola, 2014. "Modeling rating data with Nonlinear CUB models," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 100-118.
    9. Teresa Backhaus, 2022. "Training in Late Careers - A Structural Approach," CRC TR 224 Discussion Paper Series crctr224_2022_382, University of Bonn and University of Mannheim, Germany.
    10. Hancock, Thomas O. & Broekaert, Jan & Hess, Stephane & Choudhury, Charisma F., 2020. "Quantum choice models: A flexible new approach for understanding moral decision-making," Journal of choice modelling, Elsevier, vol. 37(C).
    11. Granado-Díaz, Rubén & Villanueva, Anastasio J. & Gómez-Limón, José A., 2022. "Willingness to accept for rewilding farmland in environmentally sensitive areas," Land Use Policy, Elsevier, vol. 116(C).
    12. Thoralf Meyer & Paul Holloway & Thomas B. Christiansen & Jennifer A. Miller & Paolo D’Odorico & Gregory S. Okin, 2019. "An Assessment of Multiple Drivers Determining Woody Species Composition and Structure: A Case Study from the Kalahari, Botswana," Land, MDPI, vol. 8(8), pages 1-14, August.
    13. Pramesti Getut, 2023. "Parameter least-squares estimation for time-inhomogeneous Ornstein–Uhlenbeck process," Monte Carlo Methods and Applications, De Gruyter, vol. 29(1), pages 1-32, March.
    14. Peter Andre, 2022. "Shallow Meritocracy," CRC TR 224 Discussion Paper Series crctr224_2022_318v3, University of Bonn and University of Mannheim, Germany.
    15. Jens Rommel & Julian Sagebiel & Marieke Cornelia Baaken & Jesús Barreiro‐Hurlé & Douadia Bougherara & Luigi Cembalo & Marija Cerjak & Tajana Čop & Mikołaj Czajkowski & María Espinosa‐Goded & Julia Höh, 2023. "Farmers' risk preferences in 11 European farming systems: A multi‐country replication of Bocquého et al. ()," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(3), pages 1374-1399, September.
    16. Patricia Román-Román & Juan José Serrano-Pérez & Francisco Torres-Ruiz, 2018. "Some Notes about Inference for the Lognormal Diffusion Process with Exogenous Factors," Mathematics, MDPI, vol. 6(5), pages 1-13, May.
    17. Sarrias, Mauricio, 2021. "A two recursive equation model to correct for endogeneity in latent class binary probit models," Journal of choice modelling, Elsevier, vol. 40(C).
    18. Hancock, Thomas O. & Hess, Stephane & Choudhury, Charisma F., 2018. "Decision field theory: Improvements to current methodology and comparisons with standard choice modelling techniques," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 18-40.
    19. Maciej Berk{e}sewicz & Katarzyna Pawlukiewicz, 2020. "Estimation of the number of irregular foreigners in Poland using non-linear count regression models," Papers 2008.09407, arXiv.org.
    20. Kim-Hung Pho & Tuan-Kiet Tran & Thi Diem-Chinh Ho & Wing-Keung Wong, 2019. "Optimal Solution Techniques in Decision Sciences A Review," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(1), pages 114-161, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:23:p:3703-:d:1529986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.