IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i4p381-d499421.html
   My bibliography  Save this article

Generalized Hurst Hypothesis: Description of Time-Series in Communication Systems

Author

Listed:
  • Raoul Nigmatullin

    (Radioelectronics and Informative-Measurement Techniques Department, Kazan National Research Technical University named after A. N. Tupolev (KNRTU-KAI), K. Marx Str., 10, 420111 Kazan, Russia)

  • Semyon Dorokhin

    (Laboratory of Multimedia Systems and Technology, Moscow Institute of Physics and Technology (MIPT), Institutskiy Per., 9, 141701 Dolgoprudny, Russia)

  • Alexander Ivchenko

    (Laboratory of Multimedia Systems and Technology, Moscow Institute of Physics and Technology (MIPT), Institutskiy Per., 9, 141701 Dolgoprudny, Russia)

Abstract

In this paper, we focus on the generalization of the Hurst empirical law and suggest a set of reduced parameters for quantitative description of long-time series. These series are usually considered as a specific response of a complex system (economic, geophysical, electromagnetic and other systems), where successive fixations of external factors become impossible. We consider applying generalized Hurst laws to obtain a new set of reduced parameters in data associated with communication systems. We analyze three hypotheses. The first one contains one power-law exponent. The second one incorporates two power-law exponents, which are in many cases complex-conjugated. The third hypothesis has three power-law exponents, two of which are complex-conjugated as well. These hypotheses describe with acceptable accuracy (relative error does not exceed 2%) a wide set of trendless sequences (TLS) associated with radiometric measurements. Generalized Hurst laws operate with R / S curves not only in the asymptotic region, but in the entire domain. The fitting parameters can be used as the reduced parameters for the description of the given data. The paper demonstrates that this general approach can also be applied to other TLS.

Suggested Citation

  • Raoul Nigmatullin & Semyon Dorokhin & Alexander Ivchenko, 2021. "Generalized Hurst Hypothesis: Description of Time-Series in Communication Systems," Mathematics, MDPI, vol. 9(4), pages 1-11, February.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:4:p:381-:d:499421
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/4/381/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/4/381/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nigmatullin, R.R., 2000. "Recognition of nonextensive statistical distributions by the eigencoordinates method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 285(3), pages 547-565.
    2. Carbone, A. & Castelli, G. & Stanley, H.E., 2004. "Time-dependent Hurst exponent in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 267-271.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evgeniya Gospodinova & Penio Lebamovski & Galya Georgieva-Tsaneva & Galina Bogdanova & Diana Dimitrova, 2022. "Methods for Mathematical Analysis of Simulated and Real Fractal Processes with Application in Cardiology," Mathematics, MDPI, vol. 10(19), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Zhengxun & Liu, Juan & Chen, Juanjuan, 2021. "Detecting stock market turning points using wavelet leaders method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    2. Javier Morales & V'ictor Tercero & Fernando Camacho & Eduardo Cordero & Luis L'opez & F-Javier Almaguer, 2014. "Trend and Fractality Assessment of Mexico's Stock Exchange," Papers 1411.3399, arXiv.org.
    3. Horta, Paulo & Lagoa, Sérgio & Martins, Luís, 2014. "The impact of the 2008 and 2010 financial crises on the Hurst exponents of international stock markets: Implications for efficiency and contagion," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 140-153.
    4. Li Wang & Xing-Lu Gao & Wei-Xing Zhou, 2023. "Testing For Intrinsic Multifractality In The Global Grain Spot Market Indices: A Multifractal Detrended Fluctuation Analysis," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 31(07), pages 1-24.
    5. Juraj Čurpek, 2019. "Time Evolution of Hurst Exponent: Czech Wholesale Electricity Market Study," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2019(3), pages 25-44.
    6. Yuanyuan Zhang & Stephen Chan & Jeffrey Chu & Hana Sulieman, 2020. "On the Market Efficiency and Liquidity of High-Frequency Cryptocurrencies in a Bull and Bear Market," JRFM, MDPI, vol. 13(1), pages 1-14, January.
    7. Fernandez Viviana, 2011. "Alternative Estimators of Long-Range Dependence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(2), pages 1-37, March.
    8. Serletis, Apostolos & Rosenberg, Aryeh Adam, 2009. "Mean reversion in the US stock market," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 2007-2015.
    9. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    10. Xie, Wen-Jie & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2014. "Extreme value statistics and recurrence intervals of NYMEX energy futures volatility," Economic Modelling, Elsevier, vol. 36(C), pages 8-17.
    11. A. Gómez-Águila & J. E. Trinidad-Segovia & M. A. Sánchez-Granero, 2022. "Improvement in Hurst exponent estimation and its application to financial markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    12. Stanley, H.E. & Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki, 2007. "Economic fluctuations and statistical physics: Quantifying extremely rare and less rare events in finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 286-301.
    13. Bariviera, Aurelio F., 2017. "The inefficiency of Bitcoin revisited: A dynamic approach," Economics Letters, Elsevier, vol. 161(C), pages 1-4.
    14. He, Shanshan & Wang, Yudong, 2017. "Revisiting the multifractality in stock returns and its modeling implications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 11-20.
    15. Lee, Minhyuk & Song, Jae Wook & Kim, Sondo & Chang, Woojin, 2018. "Asymmetric market efficiency using the index-based asymmetric-MFDFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1278-1294.
    16. Rodriguez, E. & Aguilar-Cornejo, M. & Femat, R. & Alvarez-Ramirez, J., 2014. "US stock market efficiency over weekly, monthly, quarterly and yearly time scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 554-564.
    17. Bariviera, A.F. & Guercio, M. Belén & Martinez, Lisana B., 2012. "A comparative analysis of the informational efficiency of the fixed income market in seven European countries," Economics Letters, Elsevier, vol. 116(3), pages 426-428.
    18. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "The influence of trading volume on market efficiency: The DCCA approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 259-265.
    19. Iraj Daizadeh, 2021. "Leveraging latent persistency in United States patent and trademark applications to gain insight into the evolution of an innovation-driven economy," Papers 2101.02588, arXiv.org, revised May 2021.
    20. Charfeddine, Lanouar & Khediri, Karim Ben & Aye, Goodness C. & Gupta, Rangan, 2018. "Time-varying efficiency of developed and emerging bond markets: Evidence from long-spans of historical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 632-647.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:4:p:381-:d:499421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.