IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i4p316-d494013.html
   My bibliography  Save this article

Multi-Objective Two-Stage Stochastic Programming Model for a Proposed Casualty Transportation System in Large-Scale Disasters: A Case Study

Author

Listed:
  • Nadide Caglayan

    (Industrial Engineering Department, Faculty of Management, Istanbul Technical University, 34367 Istanbul, Turkey
    Industrial Engineering Department, Faculty of Engineering and Architecture, Erzurum Technical University, 25050 Erzurum, Turkey)

  • Sule Itir Satoglu

    (Industrial Engineering Department, Faculty of Management, Istanbul Technical University, 34367 Istanbul, Turkey)

Abstract

Disaster management is a process that includes mitigation, preparedness, response and recovery stages. Operational strategies covering all stages must be developed in order to alleviate the negative effects of the disasters. In this study, we aimed at minimizing the number of casualties that could not be transported to the hospitals after the disaster, the number of additional ambulances required in the response stage, and the total transportation time. Besides, we assumed that a data-driven decision support tool is employed to track casualties and up-to-date hospital capacities, so as to direct the ambulances to the available hospitals. For this purpose, a multi-objective two-stage stochastic programming model was developed. The model was applied to a district in Istanbul city of Turkey, for a major earthquake. Accordingly, the model was developed with a holistic perspective with multiple objectives, periods and locations. The developed multi-objective stochastic programming model was solved using an improved version of the augmented ε-constraint (AUGMECON2) method. Hence, the Pareto optimal solutions set has been obtained and compared with the best solution achieved according to the objective of total transportation time, to see the effect of the ambulance direction decisions based on hospital capacity availability. All of the decisions examined in these comparisons were evaluated in terms of effectiveness and equity. Finally, managerial implication strategies were presented to contribute decision-makers according to the results obtained. Results showed that without implementing a data-driven decision support tool, equity in casualty transportation cannot be achieved among the demand points.

Suggested Citation

  • Nadide Caglayan & Sule Itir Satoglu, 2021. "Multi-Objective Two-Stage Stochastic Programming Model for a Proposed Casualty Transportation System in Large-Scale Disasters: A Case Study," Mathematics, MDPI, vol. 9(4), pages 1-22, February.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:4:p:316-:d:494013
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/4/316/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/4/316/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Evin Uzun Jacobson & Nilay Tanık Argon & Serhan Ziya, 2012. "Priority Assignment in Emergency Response," Operations Research, INFORMS, vol. 60(4), pages 813-832, August.
    2. Karl Schneeberger & Karl Doerner & Andrea Kurz & Michael Schilde, 2016. "Ambulance location and relocation models in a crisis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 1-27, March.
    3. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    4. Nitesh Bharosa & JinKyu Lee & Marijn Janssen, 2010. "Challenges and obstacles in sharing and coordinating information during multi-agency disaster response: Propositions from field exercises," Information Systems Frontiers, Springer, vol. 12(1), pages 49-65, March.
    5. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    6. T Andersson & P Värbrand, 2007. "Decision support tools for ambulance dispatch and relocation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 195-201, February.
    7. Fosso Wamba, Samuel & Akter, Shahriar & Edwards, Andrew & Chopin, Geoffrey & Gnanzou, Denis, 2015. "How ‘big data’ can make big impact: Findings from a systematic review and a longitudinal case study," International Journal of Production Economics, Elsevier, vol. 165(C), pages 234-246.
    8. Dean, Matthew D. & Nair, Suresh K., 2014. "Mass-casualty triage: Distribution of victims to multiple hospitals using the SAVE model," European Journal of Operational Research, Elsevier, vol. 238(1), pages 363-373.
    9. Zhang, Zhenzhen & Liu, Mengyang & Lim, Andrew, 2015. "A memetic algorithm for the patient transportation problem," Omega, Elsevier, vol. 54(C), pages 60-71.
    10. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    11. Jomon Aliyas Paul & Rajan Batta, 2011. "Improving hurricane disaster preparedness: models for optimal reallocation of hospital capacity," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 10(2), pages 194-213.
    12. Rawls, Carmen G. & Turnquist, Mark A., 2012. "Pre-positioning and dynamic delivery planning for short-term response following a natural disaster," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 46-54.
    13. Brotcorne, Luce & Laporte, Gilbert & Semet, Frederic, 2003. "Ambulance location and relocation models," European Journal of Operational Research, Elsevier, vol. 147(3), pages 451-463, June.
    14. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    15. Kyohong Shin & Taesik Lee, 2020. "Emergency medical service resource allocation in a mass casualty incident by integrating patient prioritization and hospital selection problems," IISE Transactions, Taylor & Francis Journals, vol. 52(10), pages 1141-1155, October.
    16. Jotshi, Arun & Gong, Qiang & Batta, Rajan, 2009. "Dispatching and routing of emergency vehicles in disaster mitigation using data fusion," Socio-Economic Planning Sciences, Elsevier, vol. 43(1), pages 1-24, March.
    17. Hyeong Suk Na & Amarnath Banerjee, 2015. "A disaster evacuation network model for transporting multiple priority evacuees," IISE Transactions, Taylor & Francis Journals, vol. 47(11), pages 1287-1299, November.
    18. Knight, V.A. & Harper, P.R. & Smith, L., 2012. "Ambulance allocation for maximal survival with heterogeneous outcome measures," Omega, Elsevier, vol. 40(6), pages 918-926.
    19. Michael O. Ball & Feng L. Lin, 1993. "A Reliability Model Applied to Emergency Service Vehicle Location," Operations Research, INFORMS, vol. 41(1), pages 18-36, February.
    20. Sukho Jin & Sukjae Jeong & Jangyeop Kim & Kyungsup Kim, 2015. "A logistics model for the transport of disaster victims with various injuries and survival probabilities," Annals of Operations Research, Springer, vol. 230(1), pages 17-33, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiong, Achara & Vergara, Hector A., 2023. "A two-stage stochastic multi-objective resilience optimization model for network expansion of interdependent power–water networks under disruption," International Journal of Critical Infrastructure Protection, Elsevier, vol. 40(C).
    2. Riza Andrian Ibrahim & Sukono & Herlina Napitupulu, 2022. "Multiple-Trigger Catastrophe Bond Pricing Model and Its Simulation Using Numerical Methods," Mathematics, MDPI, vol. 10(9), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farahani, Reza Zanjirani & Lotfi, M.M. & Baghaian, Atefe & Ruiz, Rubén & Rezapour, Shabnam, 2020. "Mass casualty management in disaster scene: A systematic review of OR&MS research in humanitarian operations," European Journal of Operational Research, Elsevier, vol. 287(3), pages 787-819.
    2. Liu, Yang & Cui, Na & Zhang, Jianghua, 2019. "Integrated temporary facility location and casualty allocation planning for post-disaster humanitarian medical service," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 1-16.
    3. Yiping Jiang & Yufei Yuan, 2019. "Emergency Logistics in a Large-Scale Disaster Context: Achievements and Challenges," IJERPH, MDPI, vol. 16(5), pages 1-23, March.
    4. Zhongzhen Yang & Liquan Guo & Zaili Yang, 2019. "Emergency logistics for wildfire suppression based on forecasted disaster evolution," Annals of Operations Research, Springer, vol. 283(1), pages 917-937, December.
    5. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
    6. Atefe Baghaian & M. M. Lotfi & Shabnam Rezapour, 2022. "Integrated deployment of local urban relief teams in the first hours after mass casualty incidents," Operational Research, Springer, vol. 22(4), pages 4517-4555, September.
    7. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    8. Jian Wang & Yin Wang & Mingzhu Yu, 2022. "A multi-period ambulance location and allocation problem in the disaster," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 909-932, July.
    9. Marion S. Rauner & Helmut Niessner & Steen Odd & Andrew Pope & Karen Neville & Sheila O’Riordan & Lisa Sasse & Kristina Tomic, 2018. "An advanced decision support system for European disaster management: the feature of the skills taxonomy," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(2), pages 485-530, June.
    10. Kamyabniya, Afshin & Noormohammadzadeh, Zohre & Sauré, Antoine & Patrick, Jonathan, 2021. "A robust integrated logistics model for age-based multi-group platelets in disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    11. Jian Wang & Yin Wang & Mingzhu Yu, 0. "A multi-period ambulance location and allocation problem in the disaster," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-24.
    12. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    13. Rezapour, Shabnam & Naderi, Nazanin & Morshedlou, Nazanin & Rezapourbehnagh, Shaghayegh, 2018. "Optimal deployment of emergency resources in sudden onset disasters," International Journal of Production Economics, Elsevier, vol. 204(C), pages 365-382.
    14. Shuwan Zhu & Wenjuan Fan & Xueping Li & Shanlin Yang, 2023. "Ambulance dispatching and operating room scheduling considering reusable resources in mass-casualty incidents," Operational Research, Springer, vol. 23(2), pages 1-37, June.
    15. Sung, Inkyung & Lee, Taesik, 2016. "Optimal allocation of emergency medical resources in a mass casualty incident: Patient prioritization by column generation," European Journal of Operational Research, Elsevier, vol. 252(2), pages 623-634.
    16. Nelas, José & Dias, Joana, 2020. "Optimal Emergency Vehicles Location: An approach considering the hierarchy and substitutability of resources," European Journal of Operational Research, Elsevier, vol. 287(2), pages 583-599.
    17. Huizhu Wang & Jianqin Zhou & Ling Zhou, 2024. "A Lattice Boltzmann Method-like Algorithm for the Maximal Covering Location Problem on the Complex Network: Application to Location of Railway Emergency-Rescue Spot," Mathematics, MDPI, vol. 12(2), pages 1-20, January.
    18. Carvalho, A.S. & Captivo, M.E. & Marques, I., 2020. "Integrating the ambulance dispatching and relocation problems to maximize system’s preparedness," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1064-1080.
    19. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    20. Pouraliakbari-Mamaghani, Mahsa & Saif, Ahmed & Kamal, Noreen, 2023. "Reliable design of a congested disaster relief network: A two-stage stochastic-robust optimization approach," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:4:p:316-:d:494013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.