IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v40y2012i6p918-926.html
   My bibliography  Save this article

Ambulance allocation for maximal survival with heterogeneous outcome measures

Author

Listed:
  • Knight, V.A.
  • Harper, P.R.
  • Smith, L.

Abstract

This paper proposes new models for locating emergency medical services (EMS) by incorporating survival functions for capturing multiple-classes of heterogeneous patients. The Maximal Expected Survival Location Model for Heterogeneous Patients (MESLMHP) aims to maximize the overall expected survival probability of multiple-classes of patients, whereby different classes could be defined according to agreed patient categories based on response time targets, or by capturing differing medical conditions each with a corresponding survival function. Furthermore, we propose and demonstrate an approximation approach to solving the extended stochastic version of MESLMHP, which utilizes queuing theory to permit the modeling of congestion and utilization at each ambulance station, and does not require assumptions to be made on the utilization of ambulances. Both models are demonstrated using data from the ambulance service in Wales. We show that our multiple outcome measures and survival-maximizing approach, rather than one based on average response time targets alone or a single patient class provides more effective EMS ambulance allocations.

Suggested Citation

  • Knight, V.A. & Harper, P.R. & Smith, L., 2012. "Ambulance allocation for maximal survival with heterogeneous outcome measures," Omega, Elsevier, vol. 40(6), pages 918-926.
  • Handle: RePEc:eee:jomega:v:40:y:2012:i:6:p:918-926
    DOI: 10.1016/j.omega.2012.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048312000436
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2012.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brotcorne, Luce & Laporte, Gilbert & Semet, Frederic, 2003. "Ambulance location and relocation models," European Journal of Operational Research, Elsevier, vol. 147(3), pages 451-463, June.
    2. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    3. Harper, P. R. & Shahani, A. K. & Gallagher, J. E. & Bowie, C., 2005. "Planning health services with explicit geographical considerations: a stochastic location-allocation approach," Omega, Elsevier, vol. 33(2), pages 141-152, April.
    4. M S Daskin & A Haghani, 1984. "Multiple Vehicle Routing and Dispatching to an Emergency Scene," Environment and Planning A, , vol. 16(10), pages 1349-1359, October.
    5. Susan Budge & Armann Ingolfsson & Erhan Erkut, 2009. "Technical Note---Approximating Vehicle Dispatch Probabilities for Emergency Service Systems with Location-Specific Service Times and Multiple Units per Location," Operations Research, INFORMS, vol. 57(1), pages 251-255, February.
    6. Felder, Stefan & Brinkmann, Henrik, 2002. "Spatial allocation of emergency medical services: minimising the death rate or providing equal access?," Regional Science and Urban Economics, Elsevier, vol. 32(1), pages 27-45, January.
    7. Gwyn Bevan & Richard Hamblin, 2009. "Hitting and missing targets by ambulance services for emergency calls: effects of different systems of performance measurement within the UK," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 161-190, January.
    8. Charles ReVelle & Kathleen Hogan, 1989. "The Maximum Availability Location Problem," Transportation Science, INFORMS, vol. 23(3), pages 192-200, August.
    9. Berman, Oded & Krass, Dmitry & Drezner, Zvi, 2003. "The gradual covering decay location problem on a network," European Journal of Operational Research, Elsevier, vol. 151(3), pages 474-480, December.
    10. Daniel Serra & Francisco Silva, 2002. "Locating emergency services with priority rules: The priority queuing covering location problem," Economics Working Papers 642, Department of Economics and Business, Universitat Pompeu Fabra, revised May 2008.
    11. Laura McLay & Maria Mayorga, 2010. "Evaluating emergency medical service performance measures," Health Care Management Science, Springer, vol. 13(2), pages 124-136, June.
    12. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    13. Jan M. Chaiken & Richard C. Larson, 1972. "Methods for Allocating Urban Emergency Units: A Survey," Management Science, INFORMS, vol. 19(4-Part-2), pages 110-130, December.
    14. F Silva & D Serra, 2008. "Locating emergency services with different priorities: the priority queuing covering location problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1229-1238, September.
    15. S. L. Hakimi, 1965. "Optimum Distribution of Switching Centers in a Communication Network and Some Related Graph Theoretic Problems," Operations Research, INFORMS, vol. 13(3), pages 462-475, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erhan Erkut & Armann Ingolfsson & Güneş Erdoğan, 2008. "Ambulance location for maximum survival," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(1), pages 42-58, February.
    2. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    3. Jing Yao & Alan T. Murray, 2014. "Locational Effectiveness of Clinics Providing Sexual and Reproductive Health Services to Women in Rural Mozambique," International Regional Science Review, , vol. 37(2), pages 172-193, April.
    4. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
    5. Mark S. Daskin, 2008. "What you should know about location modeling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(4), pages 283-294, June.
    6. Geroliminis, Nikolas & Karlaftis, Matthew G. & Skabardonis, Alexander, 2009. "A spatial queuing model for the emergency vehicle districting and location problem," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 798-811, August.
    7. Cheng, Yung-Hsiang & Liang, Zheng-Xian, 2014. "A strategic planning model for the railway system accident rescue problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 75-96.
    8. H K Smith & G Laporte & P R Harper, 2009. "Locational analysis: highlights of growth to maturity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 140-148, May.
    9. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    10. Akdogan, M. Altan & Bayındır, Z. Pelin & Iyigun, Cem, 2023. "An analysis of ambulance location problem from an equity perspective," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
    11. Zvi Drezner & Vladimir Marianov & George O. Wesolowsky, 2016. "Maximizing the minimum cover probability by emergency facilities," Annals of Operations Research, Springer, vol. 246(1), pages 349-362, November.
    12. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
    13. Inkyung Sung & Taesik Lee, 2018. "Scenario-based approach for the ambulance location problem with stochastic call arrivals under a dispatching policy," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 153-170, June.
    14. Leknes, Håkon & Aartun, Eirik Skorge & Andersson, Henrik & Christiansen, Marielle & Granberg, Tobias Andersson, 2017. "Strategic ambulance location for heterogeneous regions," European Journal of Operational Research, Elsevier, vol. 260(1), pages 122-133.
    15. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    16. Dirk Degel & Lara Wiesche & Sebastian Rachuba & Brigitte Werners, 2015. "Time-dependent ambulance allocation considering data-driven empirically required coverage," Health Care Management Science, Springer, vol. 18(4), pages 444-458, December.
    17. Zhi-Chun Li & Qian Liu, 2020. "Optimal deployment of emergency rescue stations in an urban transportation corridor," Transportation, Springer, vol. 47(1), pages 445-473, February.
    18. Yoon, Soovin & Albert, Laura A., 2021. "Dynamic dispatch policies for emergency response with multiple types of vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    19. Bell, John E. & Griffis, Stanley E. & Cunningham III, William A. & Eberlan, Jon A., 2011. "Location optimization of strategic alert sites for homeland defense," Omega, Elsevier, vol. 39(2), pages 151-158, April.
    20. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:40:y:2012:i:6:p:918-926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.