IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i3p242-d487097.html
   My bibliography  Save this article

Robust Model Predictive Control with Almost Zero Online Computation

Author

Listed:
  • Yan Yan

    (Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China)

  • Longge Zhang

    (Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China)

Abstract

This paper provides a strategy for the problem of robust model predictive control of constrained, discrete-time systems with state and output disturbances. Using the linear matrix inequality (LMI) method, the nested geometric proportion asymptotically stable ellipsoid (GPASE) strategy is designed off-line, and then the designed shrinking ellipsoids strategy assures the system converges on the equivalent with an exponential convergence velocity. The biggest advantage of this method is the online computation is almost reduced to zero, which makes it possible to apply the designed control scheme not only to plants with slowly varying parameters, but also to fast ones. Finally, a simulation example shows the validity of the proposed technique.

Suggested Citation

  • Yan Yan & Longge Zhang, 2021. "Robust Model Predictive Control with Almost Zero Online Computation," Mathematics, MDPI, vol. 9(3), pages 1-10, January.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:3:p:242-:d:487097
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/3/242/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/3/242/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang Longge & Yan Yan, 2017. "Robust shrinking ellipsoid model predictive control for linear parameter varying system," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-13, June.
    2. Longge Zhang & Xiangjie Liu & Xiaobing Kong, 2012. "State Estimators for Uncertain Linear Systems with Different Disturbance/Noise Using Quadratic Boundedness," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-10, June.
    3. Abdelbaky, Mohamed Abdelkarim & Liu, Xiangjie & Jiang, Di, 2020. "Design and implementation of partial offline fuzzy model-predictive pitch controller for large-scale wind-turbines," Renewable Energy, Elsevier, vol. 145(C), pages 981-996.
    4. Longge Zhang, 2013. "Automatic Offline Formulation of Robust Model Predictive Control Based on Linear Matrix Inequalities Method," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kong, Xiaobing & Ma, Lele & Wang, Ce & Guo, Shifan & Abdelbaky, Mohamed Abdelkarim & Liu, Xiangjie & Lee, Kwang Y., 2022. "Large-scale wind farm control using distributed economic model predictive scheme," Renewable Energy, Elsevier, vol. 181(C), pages 581-591.
    2. Wang, Hao & Wang, Tongguang & Ke, Shitang & Hu, Liang & Xie, Jiaojie & Cai, Xin & Cao, Jiufa & Ren, Yuxin, 2023. "Assessing code-based design wind loads for offshore wind turbines in China against typhoons," Renewable Energy, Elsevier, vol. 212(C), pages 669-682.
    3. Arabgolarcheh, Alireza & Rouhollahi, Amirhossein & Benini, Ernesto, 2023. "Analysis of middle-to-far wake behind floating offshore wind turbines in the presence of multiple platform motions," Renewable Energy, Elsevier, vol. 208(C), pages 546-560.
    4. Yang, Yang & Fu, Jianbin & Shi, Zhaobin & Ma, Lu & Yu, Jie & Fang, Fang & Chen, Shunhua & Lin, Zaibin & Li, Chun, 2023. "Performance and fatigue analysis of an integrated floating wind-current energy system considering the aero-hydro-servo-elastic coupling effects," Renewable Energy, Elsevier, vol. 216(C).
    5. Xiaobing Kong & Lele Ma & Xiangjie Liu & Mohamed Abdelkarim Abdelbaky & Qian Wu, 2020. "Wind Turbine Control Using Nonlinear Economic Model Predictive Control over All Operating Regions," Energies, MDPI, vol. 13(1), pages 1-21, January.
    6. Li, Jianshen & Wang, Shuangxin, 2021. "Dual multivariable model-free adaptive individual pitch control for load reduction in wind turbines with actuator faults," Renewable Energy, Elsevier, vol. 174(C), pages 293-304.
    7. Daniel Rodriguez-Guevara & Antonio Favela-Contreras & Francisco Beltran-Carbajal & David Sotelo & Carlos Sotelo, 2021. "Active Suspension Control Using an MPC-LQR-LPV Controller with Attraction Sets and Quadratic Stability Conditions," Mathematics, MDPI, vol. 9(20), pages 1-17, October.
    8. Nitin S. Solke & Pritesh Shah & Ravi Sekhar & T. P. Singh, 2022. "Machine Learning-Based Predictive Modeling and Control of Lean Manufacturing in Automotive Parts Manufacturing Industry," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(1), pages 89-112, March.
    9. Karijadi, Irene & Chou, Shuo-Yan & Dewabharata, Anindhita, 2023. "Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method," Renewable Energy, Elsevier, vol. 218(C).
    10. Pan, Lin & Wang, Xudong, 2020. "Variable pitch control on direct-driven PMSG for offshore wind turbine using Repetitive-TS fuzzy PID control," Renewable Energy, Elsevier, vol. 159(C), pages 221-237.
    11. Abdoos, Ali Akbar & Abdoos, Hatef & Kazemitabar, Javad & Mobashsher, Mohammad Mehdi & Khaloo, Hooman, 2023. "An intelligent hybrid method based on Monte Carlo simulation for short-term probabilistic wind power prediction," Energy, Elsevier, vol. 278(PA).
    12. Baiomy, Nehal & Kikuuwe, Ryo, 2020. "An amplitude- and rate-saturated collective pitch controller for wind turbine systems," Renewable Energy, Elsevier, vol. 158(C), pages 400-409.
    13. Han, Chaoshuai & Liu, Kun & Ma, Yongliang & Qin, Peijiang & Zou, Tao, 2021. "Multiaxial fatigue assessment of jacket-supported offshore wind turbines considering multiple random correlated loads," Renewable Energy, Elsevier, vol. 169(C), pages 1252-1264.
    14. Li, Juan & Wang, Yinan & Zhao, Xiaowei & Qi, Pengyuan, 2021. "Model free adaptive control of large and flexible wind turbine rotors with controllable flaps," Renewable Energy, Elsevier, vol. 180(C), pages 68-82.
    15. Jia, Chengzhen & Wang, Lingmei & Meng, Enlong & Chen, Liming & Liu, Yushan & Jia, Wenqiang & Bao, Yutao & Liu, Zhenguo, 2021. "Combining LIDAR and LADRC for intelligent pitch control of wind turbines," Renewable Energy, Elsevier, vol. 169(C), pages 1091-1105.
    16. Li, Jianshen & Wang, Shuangxin & Li, Yaguang, 2020. "A model-free adaptive controller with tracking error differential for collective pitching of wind turbines," Renewable Energy, Elsevier, vol. 161(C), pages 435-447.
    17. Jayalakshmi N. Sabhahit & Sanjana Satish Solanke & Vinay Kumar Jadoun & Hasmat Malik & Fausto Pedro García Márquez & Jesús María Pinar-Pérez, 2022. "Contingency Analysis of a Grid Connected EV's for Primary Frequency Control of an Industrial Microgrid Using Efficient Control Scheme," Energies, MDPI, vol. 15(9), pages 1-24, April.
    18. Sun, Kang & Xu, Zifei & Li, Shujun & Jin, Jiangtao & Wang, Peilin & Yue, Minnan & Li, Chun, 2023. "Dynamic response analysis of floating wind turbine platform in local fatigue of mooring," Renewable Energy, Elsevier, vol. 204(C), pages 733-749.
    19. Xiangjie Liu & Le Feng & Xiaobing Kong, 2022. "A Comparative Study of Robust MPC and Stochastic MPC of Wind Power Generation System," Energies, MDPI, vol. 15(13), pages 1-22, June.
    20. Wang, Jianing & Zhu, Hongqiu & Zhang, Yingjie & Cheng, Fei & Zhou, Can, 2023. "A novel prediction model for wind power based on improved long short-term memory neural network," Energy, Elsevier, vol. 265(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:3:p:242-:d:487097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.