IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i3p224-d485920.html
   My bibliography  Save this article

A New Simplified Weak Second-Order Scheme for Solving Stochastic Differential Equations with Jumps

Author

Listed:
  • Yang Li

    (College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Yaolei Wang

    (College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Taitao Feng

    (College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Yifei Xin

    (College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China)

Abstract

In this paper, we propose a new weak second-order numerical scheme for solving stochastic differential equations with jumps. By using trapezoidal rule and the integration-by-parts formula of Malliavin calculus, we theoretically prove that the numerical scheme has second-order convergence rate. To demonstrate the effectiveness and the second-order convergence rate, three numerical experiments are given.

Suggested Citation

  • Yang Li & Yaolei Wang & Taitao Feng & Yifei Xin, 2021. "A New Simplified Weak Second-Order Scheme for Solving Stochastic Differential Equations with Jumps," Mathematics, MDPI, vol. 9(3), pages 1-14, January.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:3:p:224-:d:485920
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/3/224/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/3/224/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2007, January-A.
    2. Jang, Jiwook, 2007. "Jump diffusion processes and their applications in insurance and finance," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 62-70, July.
    3. Li, Min & Huang, Chengming & Chen, Ziheng, 2021. "Compensated projected Euler-Maruyama method for stochastic differential equations with superlinear jumps," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    4. Mikulevicius, R., 2012. "On the rate of convergence of simple and jump-adapted weak Euler schemes for Lévy driven SDEs," Stochastic Processes and their Applications, Elsevier, vol. 122(7), pages 2730-2757.
    5. Maekawa, Koichi & Lee, Sangyeol & Morimoto, Takayuki & Kawai, Ken-ichi, 2008. "Jump diffusion model with application to the Japanese stock market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 223-236.
    6. Geman, Helyette, 2002. "Pure jump Levy processes for asset price modelling," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1297-1316, July.
    7. Li, Jing & Li, Lingfei & Zhang, Gongqiu, 2017. "Pure jump models for pricing and hedging VIX derivatives," Journal of Economic Dynamics and Control, Elsevier, vol. 74(C), pages 28-55.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiling Cao & Xinfeng Ruan & Shu Su & Wenjun Zhang, 2020. "Pricing VIX derivatives with infinite‐activity jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(3), pages 329-354, March.
    2. Dwueng-Chwuan Jhwueng, 2021. "Two Gaussian Bridge Processes for Mapping Continuous Trait Evolution along Phylogenetic Trees," Mathematics, MDPI, vol. 9(16), pages 1-14, August.
    3. Guillermo Andrés Cangrejo Jiménez, 2014. "La Estructura a Plazos del Riesgo Interbancario," Documentos de Trabajo 12172, Universidad del Rosario.
    4. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    5. Alessandro Bonatti & Gonzalo Cisternas, 2020. "Consumer Scores and Price Discrimination," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 87(2), pages 750-791.
    6. Liang Wang & Weixuan Xia, 2022. "Power‐type derivatives for rough volatility with jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1369-1406, July.
    7. Geman, Hélyette, 2005. "From measure changes to time changes in asset pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2701-2722, November.
    8. Zhigang Tong & Allen Liu, 2017. "Analytical pricing formulas for discretely sampled generalized variance swaps under stochastic time change," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-24, June.
    9. Tong, Zhigang & Liu, Allen, 2021. "A censored Ornstein–Uhlenbeck process for rainfall modeling and derivatives pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    10. Eckhard Platen & Renata Rendek, 2012. "The Affine Nature of Aggregate Wealth Dynamics," Research Paper Series 322, Quantitative Finance Research Centre, University of Technology, Sydney.
    11. Oliver X. Li & Weiping Li, 2015. "Hedging jump risk, expected returns and risk premia in jump-diffusion economies," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 873-888, May.
    12. Tunaru, Radu & Zheng, Teng, 2017. "Parameter estimation risk in asset pricing and risk management: A Bayesian approach," International Review of Financial Analysis, Elsevier, vol. 53(C), pages 80-93.
    13. Noh, Jungsik & Lee, Seung Y. & Lee, Sangyeol, 2012. "Quantile regression estimation for discretely observed SDE models with compound Poisson jumps," Economics Letters, Elsevier, vol. 117(3), pages 734-738.
    14. Carol Alexander & Leonardo Nogueira, 2007. "Model-free price hedge ratios for homogeneous claims on tradable assets," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 473-479.
    15. Flávio B. Gonçalves & Gareth O. Roberts, 2014. "Exact Simulation Problems for Jump-Diffusions," Methodology and Computing in Applied Probability, Springer, vol. 16(4), pages 907-930, December.
    16. Fred Espen Benth & Paul Krühner, 2018. "Approximation of forward curve models in commodity markets with arbitrage-free finite-dimensional models," Finance and Stochastics, Springer, vol. 22(2), pages 327-366, April.
    17. Jan Baldeaux & Fung & Katja Ignatieva & Eckhard Platen, 2015. "A Hybrid Model for Pricing and Hedging of Long-dated Bonds," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(4), pages 366-398, September.
    18. El-Khatib, Youssef & Goutte, Stephane & Makumbe, Zororo S. & Vives, Josep, 2023. "A hybrid stochastic volatility model in a Lévy market," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 220-235.
    19. Ke Du, 2013. "Commodity Derivative Pricing Under the Benchmark Approach," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2013, January-A.
    20. de la Cruz, H. & Jimenez, J. C, 2020. "Exact pathwise simulation of multi-dimensional Ornstein–Uhlenbeck processes," Applied Mathematics and Computation, Elsevier, vol. 366(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:3:p:224-:d:485920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.