IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v22y2018i2d10.1007_s00780-018-0355-9.html
   My bibliography  Save this article

Approximation of forward curve models in commodity markets with arbitrage-free finite-dimensional models

Author

Listed:
  • Fred Espen Benth

    (University of Oslo)

  • Paul Krühner

    (The University of Liverpool)

Abstract

In this paper, we show how to approximate Heath–Jarrow–Morton dynamics for the forward prices in commodity markets with arbitrage-free models which have a finite-dimensional state space. Moreover, we recover a closed-form representation of the forward price dynamics in the approximation models and derive the rate of convergence to the true dynamics uniformly over an interval of time to maturity under certain additional smoothness conditions. In the Markovian case, we can strengthen the convergence to be uniform over time as well. Our results are based on the construction of a convenient Riesz basis on the state space of the term structure dynamics.

Suggested Citation

  • Fred Espen Benth & Paul Krühner, 2018. "Approximation of forward curve models in commodity markets with arbitrage-free finite-dimensional models," Finance and Stochastics, Springer, vol. 22(2), pages 327-366, April.
  • Handle: RePEc:spr:finsto:v:22:y:2018:i:2:d:10.1007_s00780-018-0355-9
    DOI: 10.1007/s00780-018-0355-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-018-0355-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-018-0355-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1, July-Dece.
    2. Fred Benth & Jukka Lempa, 2014. "Optimal portfolios in commodity futures markets," Finance and Stochastics, Springer, vol. 18(2), pages 407-430, April.
    3. Tomas Björk & Lars Svensson, 2001. "On the Existence of Finite‐Dimensional Realizations for Nonlinear Forward Rate Models," Mathematical Finance, Wiley Blackwell, vol. 11(2), pages 205-243, April.
    4. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    5. Nicola Bruti-Liberati, 2007. "Numerical Solution of Stochastic Differential Equations with Jumps in Finance," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2007, January-A.
    6. Fred Espen Benth & Jan Kallsen & Thilo Meyer-Brandis, 2007. "A Non-Gaussian Ornstein-Uhlenbeck Process for Electricity Spot Price Modeling and Derivatives Pricing," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(2), pages 153-169.
    7. Fred Espen Benth & Paul Kruhner, 2014. "Representation of infinite dimensional forward price models in commodity markets," Papers 1403.4111, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul Kruhner & Shijie Xu, 2023. "Statistically consistent term structures have affine geometry," Papers 2308.02246, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fred Espen Benth & Paul Kruhner, 2015. "Approximation of forward curve models in commodity markets with arbitrage-free finite dimensional models," Papers 1512.05983, arXiv.org.
    2. Benth, Fred Espen & Paraschiv, Florentina, 2018. "A space-time random field model for electricity forward prices," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 203-216.
    3. Benth, Fred Espen & Paraschiv, Florentina, 2016. "A Structural Model for Electricity Forward Prices," Working Papers on Finance 1611, University of St. Gallen, School of Finance.
    4. Fred Espen Benth & Paul Kruhner, 2014. "Representation of infinite dimensional forward price models in commodity markets," Papers 1403.4111, arXiv.org.
    5. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    6. Guillermo Andrés Cangrejo Jiménez, 2014. "La Estructura a Plazos del Riesgo Interbancario," Documentos de Trabajo 12172, Universidad del Rosario.
    7. Carl Chiarella & Sara Pasquali & Wolfgang Runggaldier, 2001. "On Filtering in Markovian Term Structure Models (An Approximation Approach)," Research Paper Series 65, Quantitative Finance Research Centre, University of Technology, Sydney.
    8. repec:uts:finphd:40 is not listed on IDEAS
    9. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    10. Carl Chiarella & Oh-Kang Kwon, 2001. "State Variables and the Affine Nature of Markovian HJM Term Structure Models," Research Paper Series 52, Quantitative Finance Research Centre, University of Technology, Sydney.
    11. Fred Espen Benth & Heidar Eyjolfsson, 2024. "Robustness of Hilbert space-valued stochastic volatility models," Finance and Stochastics, Springer, vol. 28(4), pages 1117-1146, October.
    12. Camilla Landén & Tomas Björk, 2002. "On the construction of finite dimensional realizations for nonlinear forward rate models," Finance and Stochastics, Springer, vol. 6(3), pages 303-331.
    13. Carl Chiarella & Oh Kang Kwon, 2001. "Forward rate dependent Markovian transformations of the Heath-Jarrow-Morton term structure model," Finance and Stochastics, Springer, vol. 5(2), pages 237-257.
    14. Jan Baldeaux & Fung & Katja Ignatieva & Eckhard Platen, 2015. "A Hybrid Model for Pricing and Hedging of Long-dated Bonds," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(4), pages 366-398, September.
    15. Fred Espen Benth & Nils Detering & Silvia Lavagnini, 2021. "Accuracy of deep learning in calibrating HJM forward curves," Digital Finance, Springer, vol. 3(3), pages 209-248, December.
    16. Fred Espen Benth & Nils Detering & Silvia Lavagnini, 2020. "Accuracy of Deep Learning in Calibrating HJM Forward Curves," Papers 2006.01911, arXiv.org, revised May 2021.
    17. Kevin Fergusson & Eckhard Platen, 2014. "Hedging long-dated interest rate derivatives for Australian pension funds and life insurers," Published Paper Series 2014-7, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    18. Andrew Papanicolaou, 2014. "Stochastic Analysis Seminar on Filtering Theory," Papers 1406.1936, arXiv.org, revised Oct 2016.
    19. Mike Giles & Lukasz Szpruch, 2012. "Multilevel Monte Carlo methods for applications in finance," Papers 1212.1377, arXiv.org.
    20. Kevin John Fergusson, 2018. "Less-Expensive Pricing and Hedging of Extreme-Maturity Interest Rate Derivatives and Equity Index Options Under the Real-World Measure," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 3-2018, January-A.
    21. Fred Espen Benth & Marco Piccirilli & Tiziano Vargiolu, 2017. "Additive energy forward curves in a Heath-Jarrow-Morton framework," Papers 1709.03310, arXiv.org, revised Jun 2018.

    More about this item

    Keywords

    Energy markets; Heath–Jarrow–Morton modelling; Nonharmonic Fourier analysis; Arbitrage-free approximations;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:22:y:2018:i:2:d:10.1007_s00780-018-0355-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.