IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v389y2010i3p452-458.html
   My bibliography  Save this article

Scaling and long-range dependence in option pricing III: A fractional version of the Merton model with transaction costs

Author

Listed:
  • Wang, Xiao-Tian
  • Yan, Hai-Gang
  • Tang, Ming-Ming
  • Zhu, En-Hui

Abstract

A model for option pricing of fractional version of the Merton model with ‘Hurst exponent’ H being in [1/2,1) is established with transaction costs. In particular, for H∈(1/2,1) the minimal price Cmin(t,St) of an option under transaction costs is obtained, which displays that the timestep δt and the ‘Hurst exponent’ H play an important role in option pricing with transaction costs.

Suggested Citation

  • Wang, Xiao-Tian & Yan, Hai-Gang & Tang, Ming-Ming & Zhu, En-Hui, 2010. "Scaling and long-range dependence in option pricing III: A fractional version of the Merton model with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(3), pages 452-458.
  • Handle: RePEc:eee:phsmap:v:389:y:2010:i:3:p:452-458
    DOI: 10.1016/j.physa.2009.09.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437109008218
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2009.09.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leland, Hayne E, 1985. "Option Pricing and Replication with Transactions Costs," Journal of Finance, American Finance Association, vol. 40(5), pages 1283-1301, December.
    2. Ozdemir, Zeynel Abidin, 2009. "Linkages between international stock markets: A multivariate long-memory approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2461-2468.
    3. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    4. Weron, Rafal & Przybyłowicz, Beata, 2000. "Hurst analysis of electricity price dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(3), pages 462-468.
    5. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    6. Cajueiro, Daniel O. & Tabak, Benjamin M., 2007. "Time-varying long-range dependence in US interest rates," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 360-367.
    7. Bwo-Nung Huang & Chin Yang, 1995. "The fractal structure in multinational stock returns," Applied Economics Letters, Taylor & Francis Journals, vol. 2(3), pages 67-71.
    8. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Cajueiro, Daniel O. & Tabak, Benjamin M., 2009. "Testing for long-range dependence in the Brazilian term structure of interest rates," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1559-1573.
    11. Tabak, Benjamin M. & Cajueiro, Daniel O., 2005. "The long-range dependence behavior of the term structure of interest rates in Japan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 418-426.
    12. Jean-Philippe Bouchaud & Didier Sornette, 1994. "The Black-Scholes option pricing problem in mathematical finance: generalization and extensions for a large class of stochastic processes," Science & Finance (CFM) working paper archive 500040, Science & Finance, Capital Fund Management.
    13. Ball, Clifford A & Torous, Walter N, 1985. "On Jumps in Common Stock Prices and Their Impact on Call Option Pricing," Journal of Finance, American Finance Association, vol. 40(1), pages 155-173, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shokrollahi, Foad & Sottinen, Tommi, 2017. "Hedging in fractional Black–Scholes model with transaction costs," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 85-91.
    2. Xiao, Weilin & Zhang, Weiguo & Xu, Weijun & Zhang, Xili, 2012. "The valuation of equity warrants in a fractional Brownian environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1742-1752.
    3. Ballestra, Luca Vincenzo & Pacelli, Graziella & Radi, Davide, 2016. "A very efficient approach for pricing barrier options on an underlying described by the mixed fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 240-248.
    4. Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xili & Zhang, Xiaoli, 2012. "Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6418-6431.
    5. Ahmadian, D. & Ballestra, L.V., 2020. "Pricing geometric Asian rainbow options under the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    6. M. Rezaei & A. R. Yazdanian & A. Ashrafi & S. M. Mahmoudi, 2022. "Numerically Pricing Nonlinear Time-Fractional Black–Scholes Equation with Time-Dependent Parameters Under Transaction Costs," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 243-280, June.
    7. Foad Shokrollahi, 2017. "Fractional delta hedging strategy for pricing currency options with transaction costs," Papers 1702.00037, arXiv.org.
    8. Foad Shokrollahi & Davood Ahmadian & Luca Vincenzo Ballestra, 2021. "Actuarial strategy for pricing Asian options under a mixed fractional Brownian motion with jumps," Papers 2105.06999, arXiv.org.
    9. Foad Shokrollahi & Tommi Sottinen, 2017. "Hedging in fractional Black-Scholes model with transaction costs," Papers 1706.01534, arXiv.org, revised Jul 2017.
    10. Gu, Hui & Liang, Jin-Rong & Zhang, Yun-Xiu, 2012. "Time-changed geometric fractional Brownian motion and option pricing with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3971-3977.
    11. Tommi Sottinen & Lauri Viitasaari, 2017. "Conditional-Mean Hedging Under Transaction Costs in Gaussian Models," Papers 1708.03242, arXiv.org.
    12. Kyong-Hui Kim & Myong-Guk Sin, 2013. "Efficient hedging in general Black-Scholes model," Papers 1308.6387, arXiv.org, revised Mar 2014.
    13. Hamidreza Maleki Almani & Foad Shokrollahi & Tommi Sottinen, 2024. "Hedging in Jump Diffusion Model with Transaction Costs," Papers 2408.10785, arXiv.org.
    14. Ying Chang & Yiming Wang & Sumei Zhang, 2021. "Option Pricing under Double Heston Jump-Diffusion Model with Approximative Fractional Stochastic Volatility," Mathematics, MDPI, vol. 9(2), pages 1-10, January.
    15. Foad Shokrollahi, 2017. "The valuation of European option with transaction costs by mixed fractional Merton model," Papers 1702.00152, arXiv.org.
    16. Wang, Wensheng, 2019. "Asymptotics for discrete time hedging errors under fractional Black–Scholes models," Statistics & Probability Letters, Elsevier, vol. 149(C), pages 160-170.
    17. Foad Shokrollahi, 2016. "Subdiffusive fractional Brownian motion regime for pricing currency options under transaction costs," Papers 1612.06665, arXiv.org, revised Aug 2017.
    18. Guo, Zhidong & Yuan, Hongjun, 2014. "Pricing European option under the time-changed mixed Brownian-fractional Brownian model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 73-79.
    19. Zhang, Xili & Xiao, Weilin, 2017. "Arbitrage with fractional Gaussian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 620-628.
    20. Sun, Lin, 2013. "Pricing currency options in the mixed fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3441-3458.
    21. Foad Shokrollahi, 2017. "Pricing compound and extendible options under mixed fractional Brownian motion with jumps," Papers 1708.04829, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiao-Tian, 2011. "Scaling and long-range dependence in option pricing V: Multiscaling hedging and implied volatility smiles under the fractional Black–Scholes model with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1623-1634.
    2. Wang, Xiao-Tian, 2010. "Scaling and long range dependence in option pricing, IV: Pricing European options with transaction costs under the multifractional Black–Scholes model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(4), pages 789-796.
    3. Foad Shokrollahi, 2017. "The valuation of European option with transaction costs by mixed fractional Merton model," Papers 1702.00152, arXiv.org.
    4. Wang, Xiao-Tian & Wu, Min & Zhou, Ze-Min & Jing, Wei-Shu, 2012. "Pricing European option with transaction costs under the fractional long memory stochastic volatility model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1469-1480.
    5. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    6. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "European option pricing under the Student’s t noise with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 848-858.
    7. Malz, Allan M., 1996. "Using option prices to estimate realignment probabilities in the European Monetary System: the case of sterling-mark," Journal of International Money and Finance, Elsevier, vol. 15(5), pages 717-748, October.
    8. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    9. Moreno, Manuel, 1995. "On the term structure of Interbank interest rates: jump-diffusion processes and option pricing," DES - Working Papers. Statistics and Econometrics. WS 7074, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Andrew Ziogas & Carl Chiarella, 2003. "McKean’s Method applied to American Call Options on Jump-Diffusion Processes," Computing in Economics and Finance 2003 39, Society for Computational Economics.
    11. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
    12. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    13. Andrew Ziogas, 2005. "Pricing American Options Using Fourier Analysis," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2005, January-A.
    14. Leisen, Dietmar P. J., 1999. "The random-time binomial model," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1355-1386, September.
    15. Andrew Ziogas & Carl Chiarella, 2004. "Pricing American Options on Jump-Diffusion Processes using Fourier-Hermite Series Expansions," Computing in Economics and Finance 2004 177, Society for Computational Economics.
    16. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    17. S H Martzoukos, 2009. "Real R&D options and optimal activation of two-dimensional random controls," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(6), pages 843-858, June.
    18. Lasko Basnarkov & Viktor Stojkoski & Zoran Utkovski & Ljupco Kocarev, 2019. "Option Pricing With Heavy-Tailed Distributions Of Logarithmic Returns," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(07), pages 1-35, November.
    19. Moreno, Manuel & Serrano, Pedro & Stute, Winfried, 2011. "Statistical properties and economic implications of jump-diffusion processes with shot-noise effects," European Journal of Operational Research, Elsevier, vol. 214(3), pages 656-664, November.
    20. Hu, May & Park, Jason, 2019. "Valuation of collateralized debt obligations: An equilibrium model," Economic Modelling, Elsevier, vol. 82(C), pages 119-135.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:389:y:2010:i:3:p:452-458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.