IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v23y2016i5p323-343.html
   My bibliography  Save this article

Market calibration under a long memory stochastic volatility model

Author

Listed:
  • Jan Pospíšil
  • Tomáš Sobotka

Abstract

In this article, we study a long memory stochastic volatility model (LSV), under which stock prices follow a jump-diffusion stochastic process and its stochastic volatility is driven by a continuous-time fractional process that attains a long memory. LSV model should take into account most of the observed market aspects and unlike many other approaches, the volatility clustering phenomenon is captured explicitly by the long memory parameter. Moreover, this property has been reported in realized volatility time-series across different asset classes and time periods. In the first part of the article, we derive an alternative formula for pricing European securities. The formula enables us to effectively price European options and to calibrate the model to a given option market. In the second part of the article, we provide an empirical review of the model calibration. For this purpose, a set of traded FTSE 100 index call options is used and the long memory volatility model is compared to a popular pricing approach – the Heston model. To test stability of calibrated parameters and to verify calibration results from previous data set, we utilize multiple data sets from NYSE option market on Apple Inc. stock.

Suggested Citation

  • Jan Pospíšil & Tomáš Sobotka, 2016. "Market calibration under a long memory stochastic volatility model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(5), pages 323-343, September.
  • Handle: RePEc:taf:apmtfi:v:23:y:2016:i:5:p:323-343
    DOI: 10.1080/1350486X.2017.1279977
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/1350486X.2017.1279977
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/1350486X.2017.1279977?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Pospíšil & Tomáš Sobotka & Philipp Ziegler, 2019. "Robustness and sensitivity analyses for stochastic volatility models under uncertain data structure," Empirical Economics, Springer, vol. 57(6), pages 1935-1958, December.
    2. Josef Danv{e}k & J. Posp'iv{s}il, 2020. "Numerical aspects of integration in semi-closed option pricing formulas for stochastic volatility jump diffusion models," Papers 2006.13181, arXiv.org.
    3. Ying Chang & Yiming Wang & Sumei Zhang, 2021. "Option Pricing under Double Heston Jump-Diffusion Model with Approximative Fractional Stochastic Volatility," Mathematics, MDPI, vol. 9(2), pages 1-10, January.
    4. Lahmiri, Salim & Bekiros, Stelios, 2020. "Nonlinear analysis of Casablanca Stock Exchange, Dow Jones and S&P500 industrial sectors with a comparison," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    5. Jan Posp'iv{s}il & Vladim'ir v{S}v'igler, 2019. "Isogeometric analysis in option pricing," Papers 1910.00258, arXiv.org.
    6. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    7. R. Merino & J. Pospíšil & T. Sobotka & J. Vives, 2018. "Decomposition Formula For Jump Diffusion Models," Journal of Enterprising Culture (JEC), World Scientific Publishing Co. Pte. Ltd., vol. 21(08), pages 1-36, December.
    8. Jan Posp'iv{s}il & Tom'av{s} Sobotka & Philipp Ziegler, 2019. "Robustness and sensitivity analyses for stochastic volatility models under uncertain data structure," Papers 1912.06709, arXiv.org.
    9. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Josep Vives, 2019. "Decomposition formula for jump diffusion models," Papers 1906.06930, arXiv.org.
    10. Viktor Bezborodov & Luca Persio & Yuliya Mishura, 2019. "Option Pricing with Fractional Stochastic Volatility and Discontinuous Payoff Function of Polynomial Growth," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 331-366, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:23:y:2016:i:5:p:323-343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.