IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i24p3236-d702154.html
   My bibliography  Save this article

Performance Evaluation of the Priority Multi-Server System MMAP/PH/M/N Using Machine Learning Methods

Author

Listed:
  • Vladimir Vishnevsky

    (Institute of Control Sciences of Russian Academy of Sciences, 117997 Moscow, Russia
    These authors contributed equally to this work.)

  • Valentina Klimenok

    (Department of Applied Mathematics and Computer Science, Belarusian State University, 220030 Minsk, Belarus
    These authors contributed equally to this work.)

  • Alexander Sokolov

    (Institute of Control Sciences of Russian Academy of Sciences, 117997 Moscow, Russia
    These authors contributed equally to this work.)

  • Andrey Larionov

    (Institute of Control Sciences of Russian Academy of Sciences, 117997 Moscow, Russia
    These authors contributed equally to this work.)

Abstract

In this paper, we present the results of a study of a priority multi-server queuing system with heterogeneous customers arriving according to a marked Markovian arrival process ( MMAP ), phase-type service times ( PH ), and a queue with finite capacity. Priority traffic classes differ in PH distributions of the service time and the probability of joining the queue, which depends on the current length of the queue. If the queue is full, the customer does not enter the system. An analytical model has been developed and studied for a particular case of a queueing system with two priority classes. We present an algorithm for calculating stationary probabilities of the system state, loss probabilities, the average number of customers in the queue, and other performance characteristics for this particular case. For the general case with K priority classes, a new method for assessing the performance characteristics of complex priority systems has been developed, based on a combination of machine learning and simulation methods. We demonstrate the high efficiency of the new method by providing numerical examples.

Suggested Citation

  • Vladimir Vishnevsky & Valentina Klimenok & Alexander Sokolov & Andrey Larionov, 2021. "Performance Evaluation of the Priority Multi-Server System MMAP/PH/M/N Using Machine Learning Methods," Mathematics, MDPI, vol. 9(24), pages 1-27, December.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:24:p:3236-:d:702154
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/24/3236/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/24/3236/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qi‐Ming He & Jingui Xie & Xiaobo Zhao, 2012. "Priority queue with customer upgrades," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(5), pages 362-375, August.
    2. J.S. Cramer, 2002. "The Origins of Logistic Regression," Tinbergen Institute Discussion Papers 02-119/4, Tinbergen Institute.
    3. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    4. Sergei Dudin & Olga Dudina & Konstantin Samouylov & Alexander Dudin, 2020. "Improvement of the Fairness of Non-Preemptive Priorities in the Transmission of Heterogeneous Traffic," Mathematics, MDPI, vol. 8(6), pages 1-17, June.
    5. Valentina Klimenok & Alexander Dudin & Vladimir Vishnevsky, 2020. "Priority Multi-Server Queueing System with Heterogeneous Customers," Mathematics, MDPI, vol. 8(9), pages 1-16, September.
    6. Mustafa Akan & Oguzhan Alagoz & Baris Ata & Fatih Safa Erenay & Adnan Said, 2012. "A Broader View of Designing the Liver Allocation System," Operations Research, INFORMS, vol. 60(4), pages 757-770, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seokjun Lee & Sergei Dudin & Olga Dudina & Chesoong Kim & Valentina Klimenok, 2020. "A Priority Queue with Many Customer Types, Correlated Arrivals and Changing Priorities," Mathematics, MDPI, vol. 8(8), pages 1-20, August.
    2. A. N. Dudin & S. A. Dudin & O. S. Dudina, 2023. "Randomized Threshold Strategy for Providing Flexible Priority in Multi-Server Queueing System with a Marked Markov Arrival Process and Phase-Type Distribution of Service Time," Mathematics, MDPI, vol. 11(12), pages 1-23, June.
    3. Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
    4. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    5. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    6. Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    7. Tim Voigt & Martin Kohlhase & Oliver Nelles, 2021. "Incremental DoE and Modeling Methodology with Gaussian Process Regression: An Industrially Applicable Approach to Incorporate Expert Knowledge," Mathematics, MDPI, vol. 9(19), pages 1-26, October.
    8. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    9. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    10. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    11. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
    12. Smyl, Slawek & Hua, N. Grace, 2019. "Machine learning methods for GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1424-1431.
    13. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    14. Eike Emrich & Christian Pierdzioch, 2016. "Volunteering, Match Quality, and Internet Use," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 136(2), pages 199-226.
    15. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    16. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    17. Catherine Ikae & Jacques Savoy, 2022. "Gender identification on Twitter," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(1), pages 58-69, January.
    18. Baris Ata & Yichuan Ding & Stefanos Zenios, 2021. "An Achievable-Region-Based Approach for Kidney Allocation Policy Design with Endogenous Patient Choice," Manufacturing & Service Operations Management, INFORMS, vol. 23(1), pages 36-54, 1-2.
    19. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
    20. Martijn Kagie & Michiel Van Wezel, 2007. "Hedonic price models and indices based on boosting applied to the Dutch housing market," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 15(3‐4), pages 85-106, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:24:p:3236-:d:702154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.