IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v186y2024ics0960077924008725.html
   My bibliography  Save this article

A simple mathematical theory for Simple Volatile Memristors and their spiking circuits

Author

Listed:
  • Kamsma, T.M.
  • van Roij, R.
  • Spitoni, C.

Abstract

In pursuit of neuromorphic (brain-inspired) devices, memristors (memory-resistors) have emerged as effective components for emulating neuronal circuitry. Here we formally define a class of Simple Volatile Memristors (SVMs) based on a simple conductance equation of motion from which we build a simple mathematical theory on the dynamics of isolated SVMs and SVM-based spiking circuits. Notably, SVMs include various fluidic iontronic devices that have recently garnered significant interest due to their unique quality of operating within the same medium as the brain. Specifically we show that symmetric SVMs produce non self-crossing current–voltage hysteresis loops, while asymmetric SVMs produce self-crossing loops. Additionally, we derive a general expression for the enclosed area in a loop, providing a relation between the voltage frequency and the SVM memory timescale. These general results are shown to materialise in physical finite-element calculations of microfluidic memristors. An SVM-based circuit has been proposed that exhibits all-or-none and tonic neuronal spiking. We generalise and analyse this spiking circuit, characterising it as a two-dimensional dynamical system. Moreover, we demonstrate that stochastic effects can induce novel neuronal firing modes absent in the deterministic case. Through our analysis, the circuit dynamics are well understood, while retaining its explicit link with the physically plausible underlying system.

Suggested Citation

  • Kamsma, T.M. & van Roij, R. & Spitoni, C., 2024. "A simple mathematical theory for Simple Volatile Memristors and their spiking circuits," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924008725
    DOI: 10.1016/j.chaos.2024.115320
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924008725
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115320?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bao, B.C. & Wu, P.Y. & Bao, H. & Wu, H.G. & Zhang, X. & Chen, M., 2018. "Symmetric periodic bursting behavior and bifurcation mechanism in a third-order memristive diode bridge-based oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 146-153.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, H.G. & Ye, Y. & Bao, B.C. & Chen, M. & Xu, Q., 2019. "Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 178-185.
    2. Lin, Y. & Liu, W.B. & Bao, H. & Shen, Q., 2020. "Bifurcation mechanism of periodic bursting in a simple three-element-based memristive circuit with fast-slow effect," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    3. Deng, Yue & Li, Yuxia, 2021. "Bifurcation and bursting oscillations in 2D non-autonomous discrete memristor-based hyperchaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Danjin Zhang & Youhua Qian, 2021. "Fast-Slow Coupling Dynamics Behavior of the van der Pol-Rayleigh System," Mathematics, MDPI, vol. 9(23), pages 1-13, November.
    5. Tchitnga, R. & Mezatio, B.A. & Fozin, T. Fonzin & Kengne, R. & Louodop Fotso, P.H. & Fomethe, A., 2019. "A novel hyperchaotic three-component oscillator operating at high frequency," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 166-180.
    6. Wen, Zihao & Li, Zhijun & Li, Xiang, 2019. "Bursting oscillations and bifurcation mechanism in memristor-based Shimizu–Morioka system with two time scales," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 58-70.
    7. Danjin Zhang & Youhua Qian, 2023. "Bursting Oscillations in General Coupled Systems: A Review," Mathematics, MDPI, vol. 11(7), pages 1-16, April.
    8. Zhao, Heqi & Ma, Xindong & Yang, Weijie & Zhang, Zhao & Bi, Qinsheng, 2023. "The mechanism of periodic and chaotic bursting patterns in an externally excited memcapacitive system," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    9. Ningning Yang & Shucan Cheng & Chaojun Wu & Rong Jia & Chongxin Liu, 2019. "Dynamic Behaviors Analysis of a Chaotic Circuit Based on a Novel Fractional-Order Generalized Memristor," Complexity, Hindawi, vol. 2019, pages 1-15, May.
    10. Zhou, Chengyi & Xie, Fei & Li, Zhijun, 2020. "Complex bursting patterns and fast-slow analysis in a smallest chemical reaction system with two slow parametric excitations," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    11. Bao, Bocheng & Zhang, Xi & Bao, Han & Wu, Pingye & Wu, Zhimin & Chen, Mo, 2019. "Dynamical effects of memristive load on peak current mode buck-boost switching converter," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 69-79.
    12. Lin, Yi & Liu, Wenbo & Hang, Cheng, 2023. "Revelation and experimental verification of quasi-periodic bursting, periodic bursting, periodic oscillation in third-order non-autonomous memristive FitzHugh-Nagumo neuron circuit," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    13. Zhang, Xiufang & Yao, Zhao & Guo, Yeye & Wang, Chunni, 2021. "Target wave in the network coupled by thermistors," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924008725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.