IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i22p2846-d675788.html
   My bibliography  Save this article

A Novel Approach Combining Particle Swarm Optimization and Deep Learning for Flash Flood Detection from Satellite Images

Author

Listed:
  • Do Ngoc Tuyen

    (School of Information and Communication Technology, Hanoi University of Science and Technology, Hanoi 03000, Vietnam)

  • Tran Manh Tuan

    (Faculty of Information Technology, Thuyloi University, Hanoi 03000, Vietnam)

  • Le Hoang Son

    (VNU Information Technology Institute, Vietnam National University, Hanoi 03000, Vietnam)

  • Tran Thi Ngan

    (Faculty of Information Technology, Thuyloi University, Hanoi 03000, Vietnam)

  • Nguyen Long Giang

    (Institute of Information Technology, Vietnam Academy of Science and Technology, Hanoi 03000, Vietnam)

  • Pham Huy Thong

    (VNU Information Technology Institute, Vietnam National University, Hanoi 03000, Vietnam)

  • Vu Van Hieu

    (Institute of Information Technology, Vietnam Academy of Science and Technology, Hanoi 03000, Vietnam)

  • Vassilis C. Gerogiannis

    (Department of Digital Systems, Faculty of Technology, University of Thessaly, Geopolis, 41500 Larissa, Greece)

  • Dimitrios Tzimos

    (Department of Digital Systems, Faculty of Technology, University of Thessaly, Geopolis, 41500 Larissa, Greece)

  • Andreas Kanavos

    (Department of Digital Media and Communication, Ionian University, 28100 Kefalonia, Greece)

Abstract

Flood is one of the deadliest natural hazards worldwide, with the population affected being more than 2 billion between 1998–2017 with a lack of warning systems according to WHO. Especially, flash floods have the potential to generate fatal damages due to their rapid evolution and the limited warning and response time. An effective Early Warning Systems (EWS) could support detection and recognition of flash floods. Information about a flash flood can be mainly provided from observations of hydrology and from satellite images taken before the flash flood happens. Then, predictions from satellite images can be integrated with predictions based on sensors’ information to improve the accuracy of a forecasting system and subsequently trigger warning systems. The existing Deep Learning models such as UNET has been effectively used to segment the flash flood with high performance, but there are no ways to determine the most suitable model architecture with the proper number of layers showing the best performance in the task. In this paper, we propose a novel Deep Learning architecture, namely PSO-UNET, which combines Particle Swarm Optimization (PSO) with UNET to seek the best number of layers and the parameters of layers in the UNET based architecture; thereby improving the performance of flash flood segmentation from satellite images. Since the original UNET has a symmetrical architecture, the evolutionary computation is performed by paying attention to the contracting path and the expanding path is synchronized with the following layers in the contracting path. The UNET convolutional process is performed four times. Indeed, we consider each process as a block of the convolution having two convolutional layers in the original architecture. Training of inputs and hyper-parameters is performed by executing the PSO algorithm. In practice, the value of Dice Coefficient of our proposed model exceeds 79.75% (8.59% higher than that of the original UNET model). Experimental results on various satellite images prove the advantages and superiority of the PSO-UNET approach.

Suggested Citation

  • Do Ngoc Tuyen & Tran Manh Tuan & Le Hoang Son & Tran Thi Ngan & Nguyen Long Giang & Pham Huy Thong & Vu Van Hieu & Vassilis C. Gerogiannis & Dimitrios Tzimos & Andreas Kanavos, 2021. "A Novel Approach Combining Particle Swarm Optimization and Deep Learning for Flash Flood Detection from Satellite Images," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:22:p:2846-:d:675788
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/22/2846/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/22/2846/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Helbing, Georg & Ritter, Matthias, 2018. "Deep Learning for fault detection in wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 189-198.
    2. Purushottam Sharma & Kanak Saxena, 2017. "Application of fuzzy logic and genetic algorithm in heart disease risk level prediction," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1109-1125, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kai Yu & Lujie Zhou & Pingping Liu & Jing Chen & Dejun Miao & Jiansheng Wang, 2022. "Research on a Risk Early Warning Mathematical Model Based on Data Mining in China’s Coal Mine Management," Mathematics, MDPI, vol. 10(21), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
    2. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    3. Cristian Velandia-Cardenas & Yolanda Vidal & Francesc Pozo, 2021. "Wind Turbine Fault Detection Using Highly Imbalanced Real SCADA Data," Energies, MDPI, vol. 14(6), pages 1-26, March.
    4. Adaiton Oliveira-Filho & Ryad Zemouri & Philippe Cambron & Antoine Tahan, 2023. "Early Detection and Diagnosis of Wind Turbine Abnormal Conditions Using an Interpretable Supervised Variational Autoencoder Model," Energies, MDPI, vol. 16(12), pages 1-21, June.
    5. Hadef Hefaidh & Djebabra Mébarek, 2020. "A conceptual framework for risk matrix capitalization," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 755-764, June.
    6. Jianjun Chen & Weihao Hu & Di Cao & Bin Zhang & Qi Huang & Zhe Chen & Frede Blaabjerg, 2019. "An Imbalance Fault Detection Algorithm for Variable-Speed Wind Turbines: A Deep Learning Approach," Energies, MDPI, vol. 12(14), pages 1-15, July.
    7. Samuel-Soma M. Ajibade & Festus Victor Bekun & Festus Fatai Adedoyin & Bright Akwasi Gyamfi & Anthonia Oluwatosin Adediran, 2023. "Machine Learning Applications in Renewable Energy (MLARE) Research: A Publication Trend and Bibliometric Analysis Study (2012–2021)," Clean Technol., MDPI, vol. 5(2), pages 1-21, April.
    8. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    9. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    10. Chatterjee, Joyjit & Dethlefs, Nina, 2021. "Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    11. Marc-Alexander Lutz & Stephan Vogt & Volker Berkhout & Stefan Faulstich & Steffen Dienst & Urs Steinmetz & Christian Gück & Andres Ortega, 2020. "Evaluation of Anomaly Detection of an Autoencoder Based on Maintenace Information and Scada-Data," Energies, MDPI, vol. 13(5), pages 1-18, February.
    12. Mohammad Reza Shadi & Hamid Mirshekali & Rahman Dashti & Mohammad-Taghi Ameli & Hamid Reza Shaker, 2021. "A Parameter-Free Approach for Fault Section Detection on Distribution Networks Employing Gated Recurrent Unit," Energies, MDPI, vol. 14(19), pages 1-15, October.
    13. Richter, Lucas & Lehna, Malte & Marchand, Sophie & Scholz, Christoph & Dreher, Alexander & Klaiber, Stefan & Lenk, Steve, 2022. "Artificial Intelligence for Electricity Supply Chain automation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    14. Rasool Motahari & Yasser Saeidi Sough & Hamed Aboutorab & Morteza Saberi, 2021. "Joint optimization of maintenance and inventory policies for multi-unit systems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(3), pages 587-607, June.
    15. Feng Gao & Xiaojiang Wu & Qiang Liu & Juncheng Liu & Xiyun Yang, 2019. "Fault Simulation and Online Diagnosis of Blade Damage of Large-Scale Wind Turbines," Energies, MDPI, vol. 12(3), pages 1-16, February.
    16. Richa Sharma & Purushottam Sharma & Anshuman Singh & Veer Srivastava, 2023. "An approach to optimize performance of controller in networked control system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1639-1646, October.
    17. Jorge De La Cruz & Eduardo Gómez-Luna & Majid Ali & Juan C. Vasquez & Josep M. Guerrero, 2023. "Fault Location for Distribution Smart Grids: Literature Overview, Challenges, Solutions, and Future Trends," Energies, MDPI, vol. 16(5), pages 1-37, February.
    18. Purushottam Sharma & Shaurya Kapoor & Richa Sharma, 2023. "Ransomware detection, prevention and protection in IoT devices using ML techniques based on dynamic analysis approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 287-296, February.
    19. Jin, Zhenglei & Xu, Qifa & Jiang, Cuixia & Wang, Xiangxiang & Chen, Hao, 2023. "Ordinal few-shot learning with applications to fault diagnosis of offshore wind turbines," Renewable Energy, Elsevier, vol. 206(C), pages 1158-1169.
    20. Richmond, M. & Sobey, A. & Pandit, R. & Kolios, A., 2020. "Stochastic assessment of aerodynamics within offshore wind farms based on machine-learning," Renewable Energy, Elsevier, vol. 161(C), pages 650-661.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:22:p:2846-:d:675788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.