IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v8y2017i2d10.1007_s13198-017-0578-8.html
   My bibliography  Save this article

Application of fuzzy logic and genetic algorithm in heart disease risk level prediction

Author

Listed:
  • Purushottam Sharma

    (Rajiv Gandhi Proudyogiki Vishwavidyalaya
    Amity University)

  • Kanak Saxena

    (S.A.T.I.)

Abstract

As individuals have intrigues in their wellbeing now a days, advancement of therapeutic area application has been a standout amongst the most dynamic exploration territories. One case of the restorative area application is the identification framework for coronary illness taking into account. A weighted fuzzy standard based clinical decision support system is displayed for the conclusion of coronary illness, consequently acquiring learning from the clinical information. The proposed heart disease risk level prediction system using fuzzy and genetic for the risk forecast of heart patients comprises of two stages: (1) mechanized methodology for the era of weighted fuzzy rules and (2) building up a fuzzy principle based heart disease risk level prediction using genetic algorithm. At this point, the fuzzy framework is developed as per the weighted fuzzy standards and picked better qualities cases. In this study, a system that can capably locate the fundamentals to anticipate the risk level of patients in perspective of the given parameter about their wellbeing. The principle commitment of this study is to help a non-specialized doctors to settle on right choice about the coronary illness risk level. The framework’s execution is assessed and compared as far as rules precision concerned and the outcomes demonstrates that the framework has incredible potential in foreseeing the coronary illness risk level more precisely.

Suggested Citation

  • Purushottam Sharma & Kanak Saxena, 2017. "Application of fuzzy logic and genetic algorithm in heart disease risk level prediction," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1109-1125, November.
  • Handle: RePEc:spr:ijsaem:v:8:y:2017:i:2:d:10.1007_s13198-017-0578-8
    DOI: 10.1007/s13198-017-0578-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-017-0578-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-017-0578-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Do Ngoc Tuyen & Tran Manh Tuan & Le Hoang Son & Tran Thi Ngan & Nguyen Long Giang & Pham Huy Thong & Vu Van Hieu & Vassilis C. Gerogiannis & Dimitrios Tzimos & Andreas Kanavos, 2021. "A Novel Approach Combining Particle Swarm Optimization and Deep Learning for Flash Flood Detection from Satellite Images," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    2. Rasool Motahari & Yasser Saeidi Sough & Hamed Aboutorab & Morteza Saberi, 2021. "Joint optimization of maintenance and inventory policies for multi-unit systems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(3), pages 587-607, June.
    3. Richa Sharma & Purushottam Sharma & Anshuman Singh & Veer Srivastava, 2023. "An approach to optimize performance of controller in networked control system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1639-1646, October.
    4. Purushottam Sharma & Shaurya Kapoor & Richa Sharma, 2023. "Ransomware detection, prevention and protection in IoT devices using ML techniques based on dynamic analysis approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 287-296, February.
    5. Hadef Hefaidh & Djebabra Mébarek, 2020. "A conceptual framework for risk matrix capitalization," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 755-764, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:8:y:2017:i:2:d:10.1007_s13198-017-0578-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.