IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v157y2021ics0167947320302577.html
   My bibliography  Save this article

Approximate computation of projection depths

Author

Listed:
  • Dyckerhoff, Rainer
  • Mozharovskyi, Pavlo
  • Nagy, Stanislav

Abstract

Data depth is a concept in multivariate statistics that measures the centrality of a point in a given data cloud in Rd. If the depth of a point can be represented as the minimum of the depths with respect to all one-dimensional projections of the data, then the depth satisfies the so-called projection property. Such depths form an important class that includes many of the depths that have been proposed in literature. For depths that satisfy the projection property an approximate algorithm can easily be constructed since taking the minimum of the depths with respect to only a finite number of one-dimensional projections yields an upper bound for the depth with respect to the multivariate data. Such an algorithm is particularly useful if no exact algorithm exists or if the exact algorithm has a high computational complexity, as is the case with the halfspace depth or the projection depth. To compute these depths in high dimensions, the use of an approximate algorithm with better complexity is surely preferable. Instead of focusing on a single method we provide a comprehensive and fair comparison of several methods, both already described in the literature and original.

Suggested Citation

  • Dyckerhoff, Rainer & Mozharovskyi, Pavlo & Nagy, Stanislav, 2021. "Approximate computation of projection depths," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:csdana:v:157:y:2021:i:c:s0167947320302577
    DOI: 10.1016/j.csda.2020.107166
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947320302577
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2020.107166?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andreas Christmann & Paul Fischer & Thorsten Joachims, 2002. "Comparison between various regression depth methods and the support vector machine to approximate the minimum number of misclassifications," Computational Statistics, Springer, vol. 17(2), pages 273-287, July.
    2. Loperfido, Nicola, 2018. "Skewness-based projection pursuit: A computational approach," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 42-57.
    3. Dyckerhoff, Rainer & Mozharovskyi, Pavlo, 2016. "Exact computation of the halfspace depth," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 19-30.
    4. Shao, Wei & Zuo, Yijun, 2012. "Simulated annealing for higher dimensional projection depth," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4026-4036.
    5. Subhajit Dutta & Anil Ghosh, 2012. "On robust classification using projection depth," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 657-676, June.
    6. Cuesta-Albertos, J.A. & Nieto-Reyes, A., 2008. "The random Tukey depth," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 4979-4988, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Shao & Yijun Zuo, 2020. "Computing the halfspace depth with multiple try algorithm and simulated annealing algorithm," Computational Statistics, Springer, vol. 35(1), pages 203-226, March.
    2. Tatjana Lange & Karl Mosler & Pavlo Mozharovskyi, 2014. "Fast nonparametric classification based on data depth," Statistical Papers, Springer, vol. 55(1), pages 49-69, February.
    3. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2017. "Multivariate and functional classification using depth and distance," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 445-466, September.
    4. Zhang, Xu & Tian, Yahui & Guan, Guoyu & Gel, Yulia R., 2021. "Depth-based classification for relational data with multiple attributes," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    5. Tian, Yahui & Gel, Yulia R., 2019. "Fusing data depth with complex networks: Community detection with prior information," Computational Statistics & Data Analysis, Elsevier, vol. 139(C), pages 99-116.
    6. Pavlo Mozharovskyi & Karl Mosler & Tatjana Lange, 2015. "Classifying real-world data with the $${ DD}\alpha $$ D D α -procedure," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(3), pages 287-314, September.
    7. Anirvan Chakraborty & Probal Chaudhuri, 2014. "On data depth in infinite dimensional spaces," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 303-324, April.
    8. Giovanni Saraceno & Claudio Agostinelli, 2021. "Robust multivariate estimation based on statistical depth filters," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 935-959, December.
    9. Alicia Nieto-Reyes & Rafael Duque & Giacomo Francisci, 2021. "A Method to Automate the Prediction of Student Academic Performance from Early Stages of the Course," Mathematics, MDPI, vol. 9(21), pages 1-14, October.
    10. Xiaohui Liu & Shihua Luo & Yijun Zuo, 2020. "Some results on the computing of Tukey’s halfspace median," Statistical Papers, Springer, vol. 61(1), pages 303-316, February.
    11. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    12. repec:cte:wsrepe:24606 is not listed on IDEAS
    13. Loperfido, Nicola, 2021. "Some theoretical properties of two kurtosis matrices, with application to invariant coordinate selection," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    14. Daniel Rojas-Diaz & Alexandra Catano-Lopez & Carlos M. Vélez & Santiago Ortiz & Henry Laniado, 2024. "Confidence sub-contour box: an alternative to traditional confidence intervals," Computational Statistics, Springer, vol. 39(5), pages 2821-2858, July.
    15. Carlo Sguera & Pedro Galeano & Rosa Lillo, 2014. "Spatial depth-based classification for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 725-750, December.
    16. Nieto-Reyes, Alicia & Battey, Heather, 2021. "A topologically valid construction of depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    17. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    18. Lee, Sharon X. & McLachlan, Geoffrey J., 2022. "An overview of skew distributions in model-based clustering," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    19. Vencalek, Ondrej & Pokotylo, Oleksii, 2018. "Depth-weighted Bayes classification," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 1-12.
    20. Dyckerhoff, Rainer & Mozharovskyi, Pavlo, 2016. "Exact computation of the halfspace depth," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 19-30.
    21. Miguel Flores & Salvador Naya & Rubén Fernández-Casal & Sonia Zaragoza & Paula Raña & Javier Tarrío-Saavedra, 2020. "Constructing a Control Chart Using Functional Data," Mathematics, MDPI, vol. 8(1), pages 1-26, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:157:y:2021:i:c:s0167947320302577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.