IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i15p2758-d879481.html
   My bibliography  Save this article

Properties of Statistical Depth with Respect to Compact Convex Random Sets: The Tukey Depth

Author

Listed:
  • Luis González-De La Fuente

    (Departamento de Matemáticas, Estadística y Computación, Universidad de Cantabria, 39005 Santander, Spain)

  • Alicia Nieto-Reyes

    (Departamento de Matemáticas, Estadística y Computación, Universidad de Cantabria, 39005 Santander, Spain
    Current address: Facultad de Ciencias, Avd. de los Castros s/n, 39005 Santander, Spain.)

  • Pedro Terán

    (Departamento de Estadística e Investigación Operativa y Didáctica de las Matemáticas, Universidad de Oviedo, 33007 Oviedo, Spain)

Abstract

We study a statistical data depth with respect to compact convex random sets, which is consistent with the multivariate Tukey depth and the Tukey depth for fuzzy sets. In addition, it provides a different perspective to the existing halfspace depth with respect to compact convex random sets. In studying this depth function, we provide a series of properties for the statistical data depth with respect to compact convex random sets. These properties are an adaptation of properties that constitute the axiomatic notions of multivariate, functional, and fuzzy depth-functions and other well-known properties of depth.

Suggested Citation

  • Luis González-De La Fuente & Alicia Nieto-Reyes & Pedro Terán, 2022. "Properties of Statistical Depth with Respect to Compact Convex Random Sets: The Tukey Depth," Mathematics, MDPI, vol. 10(15), pages 1-23, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2758-:d:879481
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/15/2758/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/15/2758/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alicia Nieto-Reyes & Heather Battey & Giacomo Francisci, 2021. "Functional Symmetry and Statistical Depth for the Analysis of Movement Patterns in Alzheimer’s Patients," Mathematics, MDPI, vol. 9(8), pages 1-17, April.
    2. SALINETTI, Gabriella & WETS, Roger J.-B., 1979. "On the convergence of sequences of convex sets in finite dimensions," LIDAM Reprints CORE 352, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Cuesta-Albertos, J.A. & Nieto-Reyes, A., 2008. "The random Tukey depth," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 4979-4988, July.
    4. Nieto-Reyes, Alicia & Battey, Heather, 2021. "A topologically valid construction of depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    5. Alicia Nieto-Reyes & Rafael Duque & Giacomo Francisci, 2021. "A Method to Automate the Prediction of Student Academic Performance from Early Stages of the Course," Mathematics, MDPI, vol. 9(21), pages 1-14, October.
    6. Dias, Sónia & Brito, Paula, 2017. "Off the beaten track: A new linear model for interval data," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1118-1130.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alicia Nieto-Reyes & Heather Battey & Giacomo Francisci, 2021. "Functional Symmetry and Statistical Depth for the Analysis of Movement Patterns in Alzheimer’s Patients," Mathematics, MDPI, vol. 9(8), pages 1-17, April.
    2. Alicia Nieto-Reyes & Rafael Duque & Giacomo Francisci, 2021. "A Method to Automate the Prediction of Student Academic Performance from Early Stages of the Course," Mathematics, MDPI, vol. 9(21), pages 1-14, October.
    3. Lucas Fernandez-Piana & Marcela Svarc, 2022. "An integrated local depth measure," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 175-197, June.
    4. Carmen Lacave & Ana Isabel Molina, 2023. "Advances in Artificial Intelligence and Statistical Techniques with Applications to Health and Education," Mathematics, MDPI, vol. 11(6), pages 1-4, March.
    5. Nieto-Reyes, Alicia & Battey, Heather, 2021. "A topologically valid construction of depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    6. Dyckerhoff, Rainer & Mozharovskyi, Pavlo, 2016. "Exact computation of the halfspace depth," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 19-30.
    7. Annamaria Barbagallo & Paolo Mauro, 2012. "Evolutionary Variational Formulation for Oligopolistic Market Equilibrium Problems with Production Excesses," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 288-314, October.
    8. Miguel Flores & Salvador Naya & Rubén Fernández-Casal & Sonia Zaragoza & Paula Raña & Javier Tarrío-Saavedra, 2020. "Constructing a Control Chart Using Functional Data," Mathematics, MDPI, vol. 8(1), pages 1-26, January.
    9. Alba M. Franco-Pereira & Rosa E. Lillo, 2020. "Rank tests for functional data based on the epigraph, the hypograph and associated graphical representations," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(3), pages 651-676, September.
    10. Grechuk, Bogdan, 2023. "Extended gradient of convex function and capital allocation," European Journal of Operational Research, Elsevier, vol. 305(1), pages 429-437.
    11. Daniel Kosiorowski & Jerzy P. Rydlewski & Małgorzata Snarska, 2019. "Detecting a structural change in functional time series using local Wilcoxon statistic," Statistical Papers, Springer, vol. 60(5), pages 1677-1698, October.
    12. Einmahl, J.H.J. & Li, Jun & Liu, Regina, 2015. "Bridging Centrality and Extremity : Refining Empirical Data Depth using Extreme Value Statistics," Discussion Paper 2015-020, Tilburg University, Center for Economic Research.
    13. Marina Segura & Jorge Mello & Adolfo Hernández, 2022. "Machine Learning Prediction of University Student Dropout: Does Preference Play a Key Role?," Mathematics, MDPI, vol. 10(18), pages 1-20, September.
    14. Zuo, Yijun, 2021. "Computation of projection regression depth and its induced median," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    15. Fabrizio Maturo & Rosanna Verde, 2023. "Supervised classification of curves via a combined use of functional data analysis and tree-based methods," Computational Statistics, Springer, vol. 38(1), pages 419-459, March.
    16. repec:spo:wpmain:info:hdl:2441/3qnaslliat80pbqa8t90240unj is not listed on IDEAS
    17. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    18. Xiaohui Liu, 2017. "Fast implementation of the Tukey depth," Computational Statistics, Springer, vol. 32(4), pages 1395-1410, December.
    19. Tatjana Lange & Karl Mosler & Pavlo Mozharovskyi, 2014. "Fast nonparametric classification based on data depth," Statistical Papers, Springer, vol. 55(1), pages 49-69, February.
    20. Serfling, Robert & Wijesuriya, Uditha, 2017. "Depth-based nonparametric description of functional data, with emphasis on use of spatial depth," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 24-45.
    21. Zhang, Xu & Tian, Yahui & Guan, Guoyu & Gel, Yulia R., 2021. "Depth-based classification for relational data with multiple attributes," Journal of Multivariate Analysis, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2758-:d:879481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.