IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i19p2357-d641326.html
   My bibliography  Save this article

Control Techniques for a Class of Fractional Order Systems

Author

Listed:
  • Mircea Ivanescu

    (Department of Mechatronics, University of Craiova, 200585 Craiova, Romania)

  • Ioan Dumitrache

    (Department of Automation, University Politehnica of Bucharest, 060042 București, Romania)

  • Nirvana Popescu

    (Department of Computer Science, University Politehnica of Bucharest, 060042 București, Romania)

  • Decebal Popescu

    (Department of Computer Science, University Politehnica of Bucharest, 060042 București, Romania)

Abstract

The paper discusses several control techniques for a class of systems described by fractional order equations. The paper presents the unit frequency criteria that ensure the closed loop control for: Fractional Order Linear Systems, Fractional Order Linear Systems with nonlinear components, Time Delay Fractional Order Linear Systems, Time Delay Fractional Order Linear Systems with nonlinear components. The stability criterion is proposed for the systems composed of fractional order subsystems. These techniques are used in two applications: Soft Exoskeleton Glove Control, studied as a nonlinear model with time delay and Disabled Man-Wheelchair model, analysed as a fractional-order multi-system.

Suggested Citation

  • Mircea Ivanescu & Ioan Dumitrache & Nirvana Popescu & Decebal Popescu, 2021. "Control Techniques for a Class of Fractional Order Systems," Mathematics, MDPI, vol. 9(19), pages 1-17, September.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:19:p:2357-:d:641326
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/19/2357/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/19/2357/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christophe Tricaud & YangQuan Chen, 2010. "Time-Optimal Control of Systems with Fractional Dynamics," International Journal of Differential Equations, Hindawi, vol. 2010, pages 1-16, February.
    2. Zhijie Li & Jie Ding & Min Wu & Jinxing Lin, 2021. "Discrete fractional order PID controller design for nonlinear systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 52(15), pages 3206-3213, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Bai & Guoguang Wen & Ahmed Rahmani & Yongguang Yu, 2015. "Distributed formation control of fractional-order multi-agent systems with absolute damping and communication delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(13), pages 2380-2392, October.
    2. Jing Bai & Guoguang Wen & Ahmed Rahmani & Xing Chu & Yongguang Yu, 2016. "Consensus with a reference state for fractional-order multi-agent systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(1), pages 222-234, January.
    3. Khan, Hasib & Ahmed, Saim & Alzabut, Jehad & Azar, Ahmad Taher, 2023. "A generalized coupled system of fractional differential equations with application to finite time sliding mode control for Leukemia therapy," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Jun Liu & Wei Chen & Kaiyu Qin & Ping Li, 2018. "Consensus of Multi-Integral Fractional-Order Multiagent Systems with Nonuniform Time-Delays," Complexity, Hindawi, vol. 2018, pages 1-24, November.
    5. Muñoz-Vázquez, Aldo Jonathan & Sánchez-Torres, Juan Diego & Defoort, Michael & Boulaaras, Salah, 2021. "Predefined-time convergence in fractional-order systems," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    6. Ávalos-Ruíz, L.F. & Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Cortes-Campos, H.M. & Lavín-Delgado, J.E., 2023. "A RGB image encryption technique using chaotic maps of fractional variable-order based on DNA encoding," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    7. Fu, Peng & Wang, Can-Jun & Yang, Ke-Li & Li, Xu-Bo & Yu, Biao, 2022. "Reentrance-like vibrational resonance in a fractional-order birhythmic biological system," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    8. Iyiola, Olaniyi & Oduro, Bismark & Akinyemi, Lanre, 2021. "Analysis and solutions of generalized Chagas vectors re-infestation model of fractional order type," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    9. Mathiyalagan, Kalidass & Sangeetha, G., 2020. "Second-order sliding mode control for nonlinear fractional-order systems," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    10. Juan J. Gude & Pablo García Bringas, 2022. "A Novel Control Hardware Architecture for Implementation of Fractional-Order Identification and Control Algorithms Applied to a Temperature Prototype," Mathematics, MDPI, vol. 11(1), pages 1-40, December.
    11. Zhang, Yanlin & Deng, Shengfu, 2019. "Finite-time projective synchronization of fractional-order complex-valued memristor-based neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 176-190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:19:p:2357-:d:641326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.