IDEAS home Printed from https://ideas.repec.org/a/hin/jnijde/461048.html
   My bibliography  Save this article

Time-Optimal Control of Systems with Fractional Dynamics

Author

Listed:
  • Christophe Tricaud
  • YangQuan Chen

Abstract

We introduce a formulation for the time-optimal control problems of systems displaying fractional dynamics in the sense of the Riemann-Liouville fractional derivatives operator. To propose a solution to the general time-optimal problem, a rational approximation based on the Hankel data matrix of the impulse response is considered to emulate the behavior of the fractional differentiation operator. The original problem is then reformulated according to the new model which can be solved by traditional optimal control problem solvers. The time-optimal problem is extensively investigated for a double fractional integrator and its solution is obtained using either numerical optimization time-domain analysis.

Suggested Citation

  • Christophe Tricaud & YangQuan Chen, 2010. "Time-Optimal Control of Systems with Fractional Dynamics," International Journal of Differential Equations, Hindawi, vol. 2010, pages 1-16, February.
  • Handle: RePEc:hin:jnijde:461048
    DOI: 10.1155/2010/461048
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/IJDE/2010/461048.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/IJDE/2010/461048.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2010/461048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Bai & Guoguang Wen & Ahmed Rahmani & Yongguang Yu, 2015. "Distributed formation control of fractional-order multi-agent systems with absolute damping and communication delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(13), pages 2380-2392, October.
    2. Jing Bai & Guoguang Wen & Ahmed Rahmani & Xing Chu & Yongguang Yu, 2016. "Consensus with a reference state for fractional-order multi-agent systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(1), pages 222-234, January.
    3. Iyiola, Olaniyi & Oduro, Bismark & Akinyemi, Lanre, 2021. "Analysis and solutions of generalized Chagas vectors re-infestation model of fractional order type," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. Mathiyalagan, Kalidass & Sangeetha, G., 2020. "Second-order sliding mode control for nonlinear fractional-order systems," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    5. Mircea Ivanescu & Ioan Dumitrache & Nirvana Popescu & Decebal Popescu, 2021. "Control Techniques for a Class of Fractional Order Systems," Mathematics, MDPI, vol. 9(19), pages 1-17, September.
    6. Fu, Peng & Wang, Can-Jun & Yang, Ke-Li & Li, Xu-Bo & Yu, Biao, 2022. "Reentrance-like vibrational resonance in a fractional-order birhythmic biological system," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    7. Jun Liu & Wei Chen & Kaiyu Qin & Ping Li, 2018. "Consensus of Multi-Integral Fractional-Order Multiagent Systems with Nonuniform Time-Delays," Complexity, Hindawi, vol. 2018, pages 1-24, November.
    8. Juan J. Gude & Pablo García Bringas, 2022. "A Novel Control Hardware Architecture for Implementation of Fractional-Order Identification and Control Algorithms Applied to a Temperature Prototype," Mathematics, MDPI, vol. 11(1), pages 1-40, December.
    9. Muñoz-Vázquez, Aldo Jonathan & Sánchez-Torres, Juan Diego & Defoort, Michael & Boulaaras, Salah, 2021. "Predefined-time convergence in fractional-order systems," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    10. Zhang, Yanlin & Deng, Shengfu, 2019. "Finite-time projective synchronization of fractional-order complex-valued memristor-based neural networks with delay," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 176-190.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnijde:461048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.