IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i18p2268-d636082.html
   My bibliography  Save this article

Relationships between Copper Futures Markets from the Perspective of Jump Diffusion

Author

Listed:
  • Xue Jin

    (School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan 250014, China
    Institute of Marine Economy and Management, Shandong University of Finance and Economics, Jinan 250014, China
    School of Economics, Ocean University of China, Qingdao 266100, China
    Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada)

  • Shiwei Zhou

    (School of Economics, Ocean University of China, Qingdao 266100, China)

  • Kedong Yin

    (School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan 250014, China
    Institute of Marine Economy and Management, Shandong University of Finance and Economics, Jinan 250014, China)

  • Mingzhen Li

    (School of Economics, Ocean University of China, Qingdao 266100, China)

Abstract

This paper analyzes the price correlation effect between domestic and foreign copper futures contracts. The VAR-BEKK-GARCH (1,1) spillover effect model and the BN-S class non-parametric model based on the jumping perspective are used. The co-integration test shows a long-term equilibrium relationship between the three copper futures markets, and the Granger causality test shows that copper futures contracts have significant two-way spillover effects between different periods in Shanghai for New York copper and unidirectional mean spillover effects for London copper. The BEKK model shows significant bidirectional fluctuation spillover effects between the futures contracts of the Shanghai, London, and New York copper markets before the stock market crash. After the crash, Shanghai and New York copper have significant one-way fluctuation spillover effects on London copper futures contracts. There are jumps within a single market, and the number of joint jumps between markets increases with the significance level.

Suggested Citation

  • Xue Jin & Shiwei Zhou & Kedong Yin & Mingzhen Li, 2021. "Relationships between Copper Futures Markets from the Perspective of Jump Diffusion," Mathematics, MDPI, vol. 9(18), pages 1-25, September.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:18:p:2268-:d:636082
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/18/2268/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/18/2268/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mayer, Herbert & Rathgeber, Andreas & Wanner, Markus, 2017. "Financialization of metal markets: Does futures trading influence spot prices and volatility?," Resources Policy, Elsevier, vol. 53(C), pages 300-316.
    2. Cao, Wenbin & Guernsey, Scott B. & Linn, Scott C., 2018. "Evidence of infinite and finite jump processes in commodity futures prices: Crude oil and natural gas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 629-641.
    3. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    4. Zhang, Yahui & Liu, Li, 2018. "The lead-lag relationships between spot and futures prices of natural gas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 203-211.
    5. Zhong, Maosen & Darrat, Ali F. & Otero, Rafael, 2004. "Price discovery and volatility spillovers in index futures markets: Some evidence from Mexico," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 3037-3054, December.
    6. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 797-817.
    7. Yin, Kedong & Liu, Zhe & Jin, Xue, 2020. "Interindustry volatility spillover effects in China’s stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    8. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    9. Gulley, Andrew & Tilton, John E., 2014. "The relationship between spot and futures prices: An empirical analysis," Resources Policy, Elsevier, vol. 41(C), pages 109-112.
    10. Chang, Chiao-Yi & Lai, Jing-Yi & Chuang, I-Yuan, 2010. "Futures hedging effectiveness under the segmentation of bear/bull energy markets," Energy Economics, Elsevier, vol. 32(2), pages 442-449, March.
    11. Gong, Chen-Chen & Ji, Shen-Dan & Su, Li-Ling & Li, Sai-Ping & Ren, Fei, 2016. "The lead–lag relationship between stock index and stock index futures: A thermal optimal path method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 63-72.
    12. Wang, Xingchun, 2020. "Pricing options on the maximum or minimum of multi-assets under jump-diffusion processes," International Review of Economics & Finance, Elsevier, vol. 70(C), pages 16-26.
    13. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    14. Guo, Yaoqi & Yao, Shanshan & Cheng, Hui & Zhu, Wensong, 2020. "China's copper futures market efficiency analysis: Based on nonlinear Granger causality and multifractal methods," Resources Policy, Elsevier, vol. 68(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher L. Gilbert, 2024. "Is there a copper super-cycle?," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 37(2), pages 359-380, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarveshwar Kumar Inani, 2017. "Price discovery in Indian stock index futures market: new evidence based on intraday data," International Journal of Indian Culture and Business Management, Inderscience Enterprises Ltd, vol. 14(1), pages 23-43.
    2. Jiang, Tao & Bao, Si & Li, Long, 2019. "The linear and nonlinear lead–lag relationship among three SSE 50 Index markets: The index futures, 50ETF spot and options markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 878-893.
    3. Duc Huynh, Toan Luu & Burggraf, Tobias & Nasir, Muhammad Ali, 2020. "Financialisation of natural resources & instability caused by risk transfer in commodity markets," Resources Policy, Elsevier, vol. 66(C).
    4. Asai, Manabu & McAleer, Michael, 2015. "Leverage and feedback effects on multifactor Wishart stochastic volatility for option pricing," Journal of Econometrics, Elsevier, vol. 187(2), pages 436-446.
    5. Yun, Jaeho, 2014. "Out-of-sample density forecasts with affine jump diffusion models," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 74-87.
    6. Chang, Eric C. & Ren, Jinjuan & Shi, Qi, 2009. "Effects of the volatility smile on exchange settlement practices: The Hong Kong case," Journal of Banking & Finance, Elsevier, vol. 33(1), pages 98-112, January.
    7. Aït-Sahalia, Yacine & Li, Chenxu & Li, Chen Xu, 2021. "Closed-form implied volatility surfaces for stochastic volatility models with jumps," Journal of Econometrics, Elsevier, vol. 222(1), pages 364-392.
    8. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    9. Ahmed, Khalid, 2015. "The sheer scale of China’s urban renewal and CO2 emissions: Multiple structural breaks, long-run relationship and short-run dynamics," MPRA Paper 71035, University Library of Munich, Germany.
    10. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    11. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    12. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    13. Michael Pitt & Sheheryar Malik & Arnaud Doucet, 2014. "Simulated likelihood inference for stochastic volatility models using continuous particle filtering," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(3), pages 527-552, June.
    14. Jitka Hilliard & Wei Li, 2014. "Volatilities implied by price changes in the S&P 500 options and futures contracts," Review of Quantitative Finance and Accounting, Springer, vol. 42(4), pages 599-626, May.
    15. Yanhong Zhong & Guohe Deng, 2019. "Geometric Asian Options Pricing under the Double Heston Stochastic Volatility Model with Stochastic Interest Rate," Complexity, Hindawi, vol. 2019, pages 1-13, January.
    16. Antonio Mele, 2003. "Fundamental Properties of Bond Prices in Models of the Short-Term Rate," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 679-716, July.
    17. C. He & J. Kennedy & T. Coleman & P. Forsyth & Y. Li & K. Vetzal, 2006. "Calibration and hedging under jump diffusion," Review of Derivatives Research, Springer, vol. 9(1), pages 1-35, January.
    18. Chiang, Min-Hsien & Huang, Hsin-Yi, 2011. "Stock market momentum, business conditions, and GARCH option pricing models," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 488-505, June.
    19. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    20. Tai‐Yong Roh & Alireza Tourani‐Rad & Yahua Xu & Yang Zhao, 2021. "Volatility‐of‐volatility risk in the crude oil market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(2), pages 245-265, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:18:p:2268-:d:636082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.