IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5686413.html
   My bibliography  Save this article

Differential Games of Rechargeable Wireless Sensor Networks against Malicious Programs Based on SILRD Propagation Model

Author

Listed:
  • Guiyun Liu
  • Baihao Peng
  • Xiaojing Zhong
  • Xuejing Lan

Abstract

Based on the traditional propagation model, this paper innovatively divides nodes into high- and low-energy states through introducing Low-energy ( L ) state and presents a whole new propagation model which is more suitable for WSNs (wireless sensor networks) against malicious programs, namely, SILRD (Susceptible, Infected, Low-energy, Recovered, Dead) model. In this paper, nodes are divided into five states according to the residual energy and infection level, and the differential equations are constructed to describe the evolution of nodes. At the same time, aiming at the exhaustion of WSNs’ energy, this paper introduces charging as a method to supplement the energy. Furthermore, we regard the confrontation between WSNs and malicious programs as a kind of game and find the optimal strategies by using the Pontryagin Maximum Principle. It is found that charging as a defense mechanism can inhibit the spread of malicious programs and reduce overall costs. Meanwhile, the superiority of bang-bang control on the SILRD model is highlighted by comparing with square control.

Suggested Citation

  • Guiyun Liu & Baihao Peng & Xiaojing Zhong & Xuejing Lan, 2020. "Differential Games of Rechargeable Wireless Sensor Networks against Malicious Programs Based on SILRD Propagation Model," Complexity, Hindawi, vol. 2020, pages 1-13, July.
  • Handle: RePEc:hin:complx:5686413
    DOI: 10.1155/2020/5686413
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/5686413.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/5686413.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/5686413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guiyun Liu & Jieyong Chen & Zhongwei Liang & Zhimin Peng & Junqiang Li, 2021. "Dynamical Analysis and Optimal Control for a SEIR Model Based on Virus Mutation in WSNs," Mathematics, MDPI, vol. 9(9), pages 1-16, April.
    2. Guiyun Liu & Junqiang Li & Zhongwei Liang & Zhimin Peng, 2021. "Analysis of Time-Delay Epidemic Model in Rechargeable Wireless Sensor Networks," Mathematics, MDPI, vol. 9(9), pages 1-19, April.
    3. Guiyun Liu & Junqiang Li & Zhongwei Liang & Zhimin Peng, 2021. "Dynamical Behavior Analysis of a Time-Delay SIRS-L Model in Rechargeable Wireless Sensor Networks," Mathematics, MDPI, vol. 9(16), pages 1-21, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5686413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.