IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i9p978-d544444.html
   My bibliography  Save this article

Analysis of Time-Delay Epidemic Model in Rechargeable Wireless Sensor Networks

Author

Listed:
  • Guiyun Liu

    (School of Mechanical and Electric Engineering, Guangzhou University, Guangzhou 510006, China)

  • Junqiang Li

    (School of Mechanical and Electric Engineering, Guangzhou University, Guangzhou 510006, China)

  • Zhongwei Liang

    (School of Mechanical and Electric Engineering, Guangzhou University, Guangzhou 510006, China)

  • Zhimin Peng

    (School of Mechanical and Electric Engineering, Guangzhou University, Guangzhou 510006, China)

Abstract

With the development of wireless rechargeable sensor networks (WRSNs), many scholars began to attach attention to network security under the spread of viruses. This paper mainly studies a novel low-energy-status-based model SISL (Susceptible, Infected, Susceptible, Low-Energy). The conversion process from low-energy nodes to susceptible nodes is called charging. It is noted that the time delay of the charging process in WRSNs should be considered. However, the charging process and its time delay have not been investigated in traditional epidemic models in WRSNs. Thus, the model SISL is proposed. The basic reproduction number, the disease-free equilibrium point, and the endemic equilibrium point are discussed here. Meanwhile, local stability and global stability of the disease-free equilibrium point and the endemic equilibrium point are analyzed. The addition of the time-delay term needs to be analyzed to determine whether it affects the stability. The intervention treatment strategy under the optimal control is obtained through the establishment of the Hamiltonian function and the application of the Pontryagin principle. Finally, the theoretical results are verified by simulations.

Suggested Citation

  • Guiyun Liu & Junqiang Li & Zhongwei Liang & Zhimin Peng, 2021. "Analysis of Time-Delay Epidemic Model in Rechargeable Wireless Sensor Networks," Mathematics, MDPI, vol. 9(9), pages 1-19, April.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:978-:d:544444
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/9/978/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/9/978/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guiyun Liu & Baihao Peng & Xiaojing Zhong & Xuejing Lan, 2020. "Differential Games of Rechargeable Wireless Sensor Networks against Malicious Programs Based on SILRD Propagation Model," Complexity, Hindawi, vol. 2020, pages 1-13, July.
    2. Zhu, Linhe & Zhou, Xiao & Li, Yimin, 2019. "Global dynamics analysis and control of a rumor spreading model in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    3. Guiyun Liu & Baihao Peng & Xiaojing Zhong & Lefeng Cheng & Zhifu Li, 2020. "Attack-Defense Game between Malicious Programs and Energy-Harvesting Wireless Sensor Networks Based on Epidemic Modeling," Complexity, Hindawi, vol. 2020, pages 1-19, September.
    4. Zhu, Linhe & Guan, Gui, 2019. "Dynamical analysis of a rumor spreading model with self-discrimination and time delay in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    5. Zizhen Zhang & Yougang Wang, 2017. "Bifurcation Analysis for an SEIRS-V Model with Delays on the Transmission of Worms in a Wireless Sensor Network," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-15, January.
    6. Zhu, Linhe & Liu, Mengxue & Li, Yimin, 2019. "The dynamics analysis of a rumor propagation model in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 118-137.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guiyun Liu & Junqiang Li & Zhongwei Liang & Zhimin Peng, 2021. "Dynamical Behavior Analysis of a Time-Delay SIRS-L Model in Rechargeable Wireless Sensor Networks," Mathematics, MDPI, vol. 9(16), pages 1-21, August.
    2. Huang, He & Chen, Yahong & Ma, Yefeng, 2021. "Modeling the competitive diffusions of rumor and knowledge and the impacts on epidemic spreading," Applied Mathematics and Computation, Elsevier, vol. 388(C).
    3. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    4. Nwaibeh, E.A. & Chikwendu, C.R., 2023. "A deterministic model of the spread of scam rumor and its numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 111-129.
    5. Guilherme Ferraz de Arruda & Lucas G. S. Jeub & Angélica S. Mata & Francisco A. Rodrigues & Yamir Moreno, 2022. "From subcritical behavior to a correlation-induced transition in rumor models," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Li, Ming & Zhang, Hong & Georgescu, Paul & Li, Tan, 2021. "The stochastic evolution of a rumor spreading model with two distinct spread inhibiting and attitude adjusting mechanisms in a homogeneous social network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    7. Xinhai Lu & Yanwei Zhang & Handong Tang, 2021. "Modeling and Simulation of Dissemination of Cultivated Land Protection Policies in China," Land, MDPI, vol. 10(2), pages 1-21, February.
    8. Guiyun Liu & Jieyong Chen & Zhongwei Liang & Zhimin Peng & Junqiang Li, 2021. "Dynamical Analysis and Optimal Control for a SEIR Model Based on Virus Mutation in WSNs," Mathematics, MDPI, vol. 9(9), pages 1-16, April.
    9. Zhu, Linhe & Liu, Wenshan & Zhang, Zhengdi, 2020. "Delay differential equations modeling of rumor propagation in both homogeneous and heterogeneous networks with a forced silence function," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    10. Huo, Liang’an & Chen, Sijing, 2020. "Rumor propagation model with consideration of scientific knowledge level and social reinforcement in heterogeneous network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    11. Zhang, Jing & Wang, Xiaoli & Xie, Yanxi & Wang, Meihua, 2022. "Research on multi-topic network public opinion propagation model with time delay in emergencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    12. Keshri, Ajit Kumar & Mishra, Bimal Kumar & Rukhaiyar, Bansidhar Prasad, 2020. "When rumors create chaos in e-commerce," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    13. Shuzhen Yu & Zhiyong Yu & Haijun Jiang, 2022. "Stability, Hopf Bifurcation and Optimal Control of Multilingual Rumor-Spreading Model with Isolation Mechanism," Mathematics, MDPI, vol. 10(23), pages 1-29, December.
    14. Aníbal Coronel & Fernando Huancas & Ian Hess & Esperanza Lozada & Francisco Novoa-Muñoz, 2020. "Analysis of a SEIR-KS Mathematical Model For Computer Virus Propagation in a Periodic Environment," Mathematics, MDPI, vol. 8(5), pages 1-20, May.
    15. Javier Cifuentes-Faura & Ursula Faura-Martínez & Matilde Lafuente-Lechuga, 2022. "Mathematical Modeling and the Use of Network Models as Epidemiological Tools," Mathematics, MDPI, vol. 10(18), pages 1-14, September.
    16. Yu, Shuzhen & Yu, Zhiyong & Jiang, Haijun & Li, Jiarong, 2021. "Dynamical study and event-triggered impulsive control of rumor propagation model on heterogeneous social network incorporating delay," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    17. Guiyun Liu & Zhimin Peng & Zhongwei Liang & Xiaojing Zhong & Xinhai Xia, 2022. "Analysis and Control of Malware Mutation Model in Wireless Rechargeable Sensor Network with Charging Delay," Mathematics, MDPI, vol. 10(14), pages 1-28, July.
    18. Cheng, Yingying & Huo, Liang'an & Zhao, Laijun, 2022. "Stability analysis and optimal control of rumor spreading model under media coverage considering time delay and pulse vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    19. Yin, Qian & Wang, Zhishuang & Xia, Chengyi & Dehmer, Matthias & Emmert-Streib, Frank & Jin, Zhen, 2020. "A novel epidemic model considering demographics and intercity commuting on complex dynamical networks," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    20. Wang, Song & Guo, Zhengzhi & Wang, Zhaoyang & Gao, YiFan & Sun, Muyi, 2024. "User generated content intelligent analysis for urban natural gas with transformer-based cyber-physical social systems," Applied Energy, Elsevier, vol. 374(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:9:p:978-:d:544444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.