IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i14p1693-d596905.html
   My bibliography  Save this article

Existence and U-H-R Stability of Solutions to the Implicit Nonlinear FBVP in the Variable Order Settings

Author

Listed:
  • Mohammed K. A. Kaabar

    (Institute of Mathematical Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
    These authors contributed equally to this work.)

  • Ahmed Refice

    (Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbes, Sidi bel Abbes 22000, Algeria
    These authors contributed equally to this work.)

  • Mohammed Said Souid

    (Department of Economic Sciences, University of Tiaret, Tiaret 14035, Algeria
    These authors contributed equally to this work.)

  • Francisco Martínez

    (Department of Applied Mathematics and Statistics, Technological University of Cartagena, 30203 Cartagena, Spain
    These authors contributed equally to this work.)

  • Sina Etemad

    (Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran
    These authors contributed equally to this work.)

  • Zailan Siri

    (Institute of Mathematical Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
    These authors contributed equally to this work.)

  • Shahram Rezapour

    (Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran
    Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
    These authors contributed equally to this work.)

Abstract

In this paper, the existence of the solution and its stability to the fractional boundary value problem (FBVP) were investigated for an implicit nonlinear fractional differential equation (VOFDE) of variable order. All existence criteria of the solutions in our establishments were derived via Krasnoselskii’s fixed point theorem and in the sequel, and its Ulam–Hyers–Rassias (U-H-R) stability is checked. An illustrative example is presented at the end of this paper to validate our findings.

Suggested Citation

  • Mohammed K. A. Kaabar & Ahmed Refice & Mohammed Said Souid & Francisco Martínez & Sina Etemad & Zailan Siri & Shahram Rezapour, 2021. "Existence and U-H-R Stability of Solutions to the Implicit Nonlinear FBVP in the Variable Order Settings," Mathematics, MDPI, vol. 9(14), pages 1-17, July.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:14:p:1693-:d:596905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/14/1693/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/14/1693/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, HongGuang & Chen, Wen & Chen, YangQuan, 2009. "Variable-order fractional differential operators in anomalous diffusion modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(21), pages 4586-4592.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashish Rayal & Bhagawati Prasad Joshi & Mukesh Pandey & Delfim F. M. Torres, 2023. "Numerical Investigation of the Fractional Oscillation Equations under the Context of Variable Order Caputo Fractional Derivative via Fractional Order Bernstein Wavelets," Mathematics, MDPI, vol. 11(11), pages 1-22, May.
    2. Kherraz, Tahar & Benbachir, Maamar & Lakrib, Mustapha & Samei, Mohammad Esmael & Kaabar, Mohammed K.A. & Bhanotar, Shailesh A., 2023. "Existence and uniqueness results for fractional boundary value problems with multiple orders of fractional derivatives and integrals," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qu, Hai-Dong & Liu, Xuan & Lu, Xin & ur Rahman, Mati & She, Zi-Hang, 2022. "Neural network method for solving nonlinear fractional advection-diffusion equation with spatiotemporal variable-order," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Ganji, R.M. & Jafari, H. & Baleanu, D., 2020. "A new approach for solving multi variable orders differential equations with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    3. Chang, Ailian & Sun, HongGuang & Zheng, Chunmiao & Lu, Bingqing & Lu, Chengpeng & Ma, Rui & Zhang, Yong, 2018. "A time fractional convection–diffusion equation to model gas transport through heterogeneous soil and gas reservoirs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 356-369.
    4. Wu, Fei & Gao, Renbo & Liu, Jie & Li, Cunbao, 2020. "New fractional variable-order creep model with short memory," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    5. Li, Jun-Feng & Jahanshahi, Hadi & Kacar, Sezgin & Chu, Yu-Ming & Gómez-Aguilar, J.F. & Alotaibi, Naif D. & Alharbi, Khalid H., 2021. "On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    6. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    7. Noureddine Djenina & Adel Ouannas & Iqbal M. Batiha & Giuseppe Grassi & Viet-Thanh Pham, 2020. "On the Stability of Linear Incommensurate Fractional-Order Difference Systems," Mathematics, MDPI, vol. 8(10), pages 1-12, October.
    8. Chauhan, Archana & Gautam, G.R. & Chauhan, S.P.S. & Dwivedi, Arpit, 2023. "A validation on concept of formula for variable order integral and derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    9. Hossein Fazli & HongGuang Sun & Juan J. Nieto, 2020. "Fractional Langevin Equation Involving Two Fractional Orders: Existence and Uniqueness Revisited," Mathematics, MDPI, vol. 8(5), pages 1-10, May.
    10. Pu, Zhe & Ran, Maohua & Luo, Hong, 2021. "Fast and high-order difference schemes for the fourth-order fractional sub-diffusion equations with spatially variable coefficient under the first Dirichlet boundary conditions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 110-133.
    11. Wei, Leilei & Li, Wenbo, 2021. "Local discontinuous Galerkin approximations to variable-order time-fractional diffusion model based on the Caputo–Fabrizio fractional derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 280-290.
    12. Liu, Lu & Xue, Dingyu & Zhang, Shuo, 2019. "Closed-loop time response analysis of irrational fractional-order systems with numerical Laplace transform technique," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 133-152.
    13. Heydari, M.H. & Avazzadeh, Z. & Mahmoudi, M.R., 2019. "Chebyshev cardinal wavelets for nonlinear stochastic differential equations driven with variable-order fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 105-124.
    14. Heydari, Mohammad Hossein & Avazzadeh, Zakieh, 2018. "Legendre wavelets optimization method for variable-order fractional Poisson equation," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 180-190.
    15. Zhang, Yong & Sun, HongGuang & Stowell, Harold H. & Zayernouri, Mohsen & Hansen, Samantha E., 2017. "A review of applications of fractional calculus in Earth system dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 29-46.
    16. Qureshi, Sania & Bonyah, Ebenezer & Shaikh, Asif Ali, 2019. "Classical and contemporary fractional operators for modeling diarrhea transmission dynamics under real statistical data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    17. Sun, HongGuang & Li, Zhipeng & Zhang, Yong & Chen, Wen, 2017. "Fractional and fractal derivative models for transient anomalous diffusion: Model comparison," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 346-353.
    18. Heydari, Mohammad Hossein & Avazzadeh, Zakieh & Haromi, Malih Farzi, 2019. "A wavelet approach for solving multi-term variable-order time fractional diffusion-wave equation," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 215-228.
    19. Yang, Xiao-Jun & Machado, J.A. Tenreiro, 2017. "A new fractional operator of variable order: Application in the description of anomalous diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 276-283.
    20. Souad Bensid Ahmed & Adel Ouannas & Mohammed Al Horani & Giuseppe Grassi, 2022. "The Discrete Fractional Variable-Order Tinkerbell Map: Chaos, 0–1 Test, and Entropy," Mathematics, MDPI, vol. 10(17), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:14:p:1693-:d:596905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.