IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i14p1592-d589785.html
   My bibliography  Save this article

On the Maximal Shortest Paths Cover Number

Author

Listed:
  • Iztok Peterin

    (Institute of Mathematics and Physics, Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia)

  • Gabriel Semanišin

    (Institute of Computer Science, Faculty of Science, Pavol Jozef Šafárik University, 041 54 Košice, Slovakia)

Abstract

A shortest path P of a graph G is maximal if P is not contained as a subpath in any other shortest path. A set S ⊆ V ( G ) is a maximal shortest paths cover if every maximal shortest path of G contains a vertex of S . The minimum cardinality of a maximal shortest paths cover is called the maximal shortest paths cover number and is denoted by ξ ( G ) . We show that it is NP-hard to determine ξ ( G ) . We establish a connection between ξ ( G ) and several other graph parameters. We present a linear time algorithm that computes exact value for ξ ( T ) of a tree T .

Suggested Citation

  • Iztok Peterin & Gabriel Semanišin, 2021. "On the Maximal Shortest Paths Cover Number," Mathematics, MDPI, vol. 9(14), pages 1-10, July.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:14:p:1592-:d:589785
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/14/1592/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/14/1592/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. András Sebő & Eric Tannier, 2004. "On Metric Generators of Graphs," Mathematics of Operations Research, INFORMS, vol. 29(2), pages 383-393, May.
    2. Brešar, Boštjan & Kos, Tim & Krivoš-Belluš, Rastislav & Semanišin, Gabriel, 2019. "Hitting subgraphs in P4-tidy graphs," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 211-219.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuel, Paul & Brešar, Boštjan & Klavžar, Sandi, 2022. "The geodesic-transversal problem," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    2. Manuel, Paul & Brešar, Boštjan & Klavžar, Sandi, 2023. "Geodesic packing in graphs," Applied Mathematics and Computation, Elsevier, vol. 459(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Hallaway & Cong X. Kang & Eunjeong Yi, 2014. "On metric dimension of permutation graphs," Journal of Combinatorial Optimization, Springer, vol. 28(4), pages 814-826, November.
    2. Ismael González Yero, 2020. "The Simultaneous Strong Resolving Graph and the Simultaneous Strong Metric Dimension of Graph Families," Mathematics, MDPI, vol. 8(1), pages 1-11, January.
    3. González, Antonio & Hernando, Carmen & Mora, Mercè, 2018. "Metric-locating-dominating sets of graphs for constructing related subsets of vertices," Applied Mathematics and Computation, Elsevier, vol. 332(C), pages 449-456.
    4. Sedlar, Jelena & Škrekovski, Riste, 2021. "Bounds on metric dimensions of graphs with edge disjoint cycles," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    5. Knor, Martin & Majstorović, Snježana & Masa Toshi, Aoden Teo & Škrekovski, Riste & Yero, Ismael G., 2021. "Graphs with the edge metric dimension smaller than the metric dimension," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    6. Mladenović, Nenad & Kratica, Jozef & Kovačević-Vujčić, Vera & Čangalović, Mirjana, 2012. "Variable neighborhood search for metric dimension and minimal doubly resolving set problems," European Journal of Operational Research, Elsevier, vol. 220(2), pages 328-337.
    7. Sedlar, Jelena & Škrekovski, Riste, 2021. "Extremal mixed metric dimension with respect to the cyclomatic number," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    8. Juan Wang & Lianying Miao & Yunlong Liu, 2019. "Characterization of n -Vertex Graphs of Metric Dimension n − 3 by Metric Matrix," Mathematics, MDPI, vol. 7(5), pages 1-13, May.
    9. Yero, Ismael G. & Estrada-Moreno, Alejandro & Rodríguez-Velázquez, Juan A., 2017. "Computing the k-metric dimension of graphs," Applied Mathematics and Computation, Elsevier, vol. 300(C), pages 60-69.
    10. Sunny Kumar Sharma & Vijay Kumar Bhat, 2022. "On metric dimension of plane graphs with $$\frac{m}{2}$$ m 2 number of 10 sided faces," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1433-1458, October.
    11. Jun Guo & Kaishun Wang & Fenggao Li, 2013. "Metric dimension of some distance-regular graphs," Journal of Combinatorial Optimization, Springer, vol. 26(1), pages 190-197, July.
    12. Muhammad Azeem & Muhammad Kamran Jamil & Yilun Shang, 2023. "Notes on the Localization of Generalized Hexagonal Cellular Networks," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
    13. Ron Adar & Leah Epstein, 2017. "The k-metric dimension," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 1-30, July.
    14. Yuezhong Zhang & Suogang Gao, 2020. "On the edge metric dimension of convex polytopes and its related graphs," Journal of Combinatorial Optimization, Springer, vol. 39(2), pages 334-350, February.
    15. Rashad Ismail & Asim Nadeem & Kamran Azhar, 2024. "Local Metric Resolvability of Generalized Petersen Graphs," Mathematics, MDPI, vol. 12(14), pages 1-14, July.
    16. Shahid Imran & Muhammad Kamran Siddiqui & Muhammad Imran & Muhammad Hussain, 2018. "On Metric Dimensions of Symmetric Graphs Obtained by Rooted Product," Mathematics, MDPI, vol. 6(10), pages 1-16, October.
    17. Ali N. A. Koam & Ali Ahmad & Muhammad Ibrahim & Muhammad Azeem, 2021. "Edge Metric and Fault-Tolerant Edge Metric Dimension of Hollow Coronoid," Mathematics, MDPI, vol. 9(12), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:14:p:1592-:d:589785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.