IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i13p1513-d584000.html
   My bibliography  Save this article

A Review of Matrix SIR Arino Epidemic Models

Author

Listed:
  • Florin Avram

    (Laboratoire de Mathématiques Appliquées, Université de Pau, 64000 Pau, France)

  • Rim Adenane

    (Département des Mathématiques, Université Ibn-Tofail, Kenitra 14000, Morocco)

  • David I. Ketcheson

    (Department of Applied Mathematics and Computational Science, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia)

Abstract

Many of the models used nowadays in mathematical epidemiology, in particular in COVID-19 research, belong to a certain subclass of compartmental models whose classes may be divided into three “ ( x , y , z ) ” groups, which we will call respectively “susceptible/entrance, diseased, and output” (in the classic SIR case, there is only one class of each type). Roughly, the ODE dynamics of these models contains only linear terms, with the exception of products between x and y terms. It has long been noticed that the reproduction number R has a very simple Formula in terms of the matrices which define the model, and an explicit first integral Formula is also available. These results can be traced back at least to Arino, Brauer, van den Driessche, Watmough, and Wu (2007) and to Feng (2007), respectively, and may be viewed as the “basic laws of SIR-type epidemics”. However, many papers continue to reprove them in particular instances. This motivated us to redraw attention to these basic laws and provide a self-contained reference of related formulas for ( x , y , z ) models. For the case of one susceptible class, we propose to use the name SIR-PH, due to a simple probabilistic interpretation as SIR models where the exponential infection time has been replaced by a PH-type distribution. Note that to each SIR-PH model, one may associate a scalar quantity Y ( t ) which satisfies “classic SIR relations”,which may be useful to obtain approximate control policies.

Suggested Citation

  • Florin Avram & Rim Adenane & David I. Ketcheson, 2021. "A Review of Matrix SIR Arino Epidemic Models," Mathematics, MDPI, vol. 9(13), pages 1-14, June.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:13:p:1513-:d:584000
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/13/1513/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/13/1513/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernando Alvarez & David Argente, 2020. "A Simple Planning Problem for COVID-19 Lockdown," Working Papers 2020-34, Becker Friedman Institute for Research In Economics.
    2. Kurtz, Thomas G., 1978. "Strong approximation theorems for density dependent Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 6(3), pages 223-240, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Publio Darío Cortés-Carvajal & Mitzi Cubilla-Montilla & David Ricardo González-Cortés, 2022. "Estimation of the Instantaneous Reproduction Number and Its Confidence Interval for Modeling the COVID-19 Pandemic," Mathematics, MDPI, vol. 10(2), pages 1-30, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.
    2. Kumar, Anand & Priya, Bhawna & Srivastava, Samir K., 2021. "Response to the COVID-19: Understanding implications of government lockdown policies," Journal of Policy Modeling, Elsevier, vol. 43(1), pages 76-94.
    3. David Baqaee & Emmanuel Farhi, 2020. "Nonlinear Production Networks with an Application to the Covid-19 Crisis," NBER Working Papers 27281, National Bureau of Economic Research, Inc.
    4. Achal Bassamboo & J. Michael Harrison & Assaf Zeevi, 2006. "Design and Control of a Large Call Center: Asymptotic Analysis of an LP-Based Method," Operations Research, INFORMS, vol. 54(3), pages 419-435, June.
    5. Nicola Fuchs-Schündeln & Dirk Krueger & André Kurmann & Etienne Lalé & Alexander Ludwig & Irina Popova, 2023. "The Fiscal and Welfare Effects of Policy Responses to the Covid-19 School Closures," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 71(1), pages 35-98, March.
    6. Gopal K. Basak & Chandramauli Chakraborty & Pranab Kumar Das, 2021. "Optimal Lockdown Strategy in a Pandemic: An Exploratory Analysis for Covid-19," Papers 2109.02512, arXiv.org.
    7. Gottlieb Charles & Grobovšek Jan & Poschke Markus & Saltiel Fernando, 2022. "Lockdown Accounting," The B.E. Journal of Macroeconomics, De Gruyter, vol. 22(1), pages 197-210, January.
    8. Giacomo Aletti & Alessandro Benfenati & Giovanni Naldi, 2021. "Graph, Spectra, Control and Epidemics: An Example with a SEIR Model," Mathematics, MDPI, vol. 9(22), pages 1-13, November.
    9. Hortaçsu, Ali & Liu, Jiarui & Schwieg, Timothy, 2021. "Estimating the fraction of unreported infections in epidemics with a known epicenter: An application to COVID-19," Journal of Econometrics, Elsevier, vol. 220(1), pages 106-129.
    10. Joshua Bernstein & Alexander W. Richter & Nathaniel A. Throckmorton, 2020. "COVID-19: A View from the Labor Market," Working Papers 2010, Federal Reserve Bank of Dallas.
    11. Davide Crapis & Bar Ifrach & Costis Maglaras & Marco Scarsini, 2017. "Monopoly Pricing in the Presence of Social Learning," Management Science, INFORMS, vol. 63(11), pages 3586-3608, November.
    12. Muhammed A. Yildirim & Cem Cakmakli & Selva Demiralp & Sebnem Kalemli-Ozcan & Sevcan Yesiltas, 2021. "The Economic Case for Global Vaccinations: An Epidemiological Model with International Production Networks," Growth Lab Working Papers 169, Harvard's Growth Lab.
    13. Linus Nyiwul, 2021. "Epidemic Control and Resource Allocation: Approaches and Implications for the Management of COVID-19," Studies in Microeconomics, , vol. 9(2), pages 283-305, December.
    14. Mauro Bambi & Daria Ghilli & Fausto Gozzi & Marta Leocata, 2021. "Habits and demand changes after COVID-19," Papers 2107.00909, arXiv.org, revised Mar 2022.
    15. Ankit Gupta & Mustafa Khammash, 2022. "Frequency spectra and the color of cellular noise," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    16. Hakan Yilmazkuday, 2021. "Welfare costs of COVID‐19: Evidence from US counties," Journal of Regional Science, Wiley Blackwell, vol. 61(4), pages 826-848, September.
    17. Darcy W. E. Allen & Chris Berg & Sinclair Davidson & Jason Potts, 2022. "On Coase and COVID-19," European Journal of Law and Economics, Springer, vol. 54(1), pages 107-125, August.
    18. La Torre, Davide & Liuzzi, Danilo & Marsiglio, Simone, 2021. "Epidemics and macroeconomic outcomes: Social distancing intensity and duration," Journal of Mathematical Economics, Elsevier, vol. 93(C).
    19. Jesper Akesson & Sam Ashworth-Hayes & Robert Hahn & Robert Metcalfe & Itzhak Rasooly, 2022. "Fatalism, beliefs, and behaviors during the COVID-19 pandemic," Journal of Risk and Uncertainty, Springer, vol. 64(2), pages 147-190, April.
    20. Nano Prawoto & Eko Priyo Purnomo & Abitassha Az Zahra, 2020. "The Impacts of Covid-19 Pandemic on Socio-Economic Mobility in Indonesia," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(3), pages 57-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:13:p:1513-:d:584000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.