IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i12p1364-d573920.html
   My bibliography  Save this article

Complementary Airflow Control of Oscillating Water Columns for Floating Offshore Wind Turbine Stabilization

Author

Listed:
  • Fares M’zoughi

    (Automatic Control Group—ACG, Institute of Research and Development of Processes—IIDP, Department of Automatic Control and Systems Engineering, Faculty of Engineering of Bilbao, University of the Basque Country—UPV/EHU, Po Rafael Moreno no3, 48013 Bilbao, Spain)

  • Payam Aboutalebi

    (Automatic Control Group—ACG, Institute of Research and Development of Processes—IIDP, Department of Automatic Control and Systems Engineering, Faculty of Engineering of Bilbao, University of the Basque Country—UPV/EHU, Po Rafael Moreno no3, 48013 Bilbao, Spain)

  • Izaskun Garrido

    (Automatic Control Group—ACG, Institute of Research and Development of Processes—IIDP, Department of Automatic Control and Systems Engineering, Faculty of Engineering of Bilbao, University of the Basque Country—UPV/EHU, Po Rafael Moreno no3, 48013 Bilbao, Spain)

  • Aitor J. Garrido

    (Automatic Control Group—ACG, Institute of Research and Development of Processes—IIDP, Department of Automatic Control and Systems Engineering, Faculty of Engineering of Bilbao, University of the Basque Country—UPV/EHU, Po Rafael Moreno no3, 48013 Bilbao, Spain)

  • Manuel De La Sen

    (Automatic Control Group—ACG, Institute of Research and Development of Processes—IIDP, Department of Electricity and Electronics, Faculty of Science and Technology, University of the Basque Country—UPV/EHU, Bo Sarriena s/n, 48080 Leioa, Spain)

Abstract

The implementation and integration of new methods and control techniques to floating offshore wind turbines (FOWTs) have the potential to significantly improve its structural response. This paper discusses the idea of integrating oscillating water columns (OWCs) into the barge platform of the FOWT to transform it into a multi-purpose platform for harnessing both wind and wave energies. Moreover, the OWCs will be operated in order to help stabilize the FOWT platform by means of an airflow control strategy used to reduce the platform pitch and tower top fore-aft displacement. This objective is achieved by a proposed complementary airflow control strategy to control the valves within the OWCs. The comparative study between a standard FOWT and the proposed OWC-based FOWT shows an improvement in the platform’s stability.

Suggested Citation

  • Fares M’zoughi & Payam Aboutalebi & Izaskun Garrido & Aitor J. Garrido & Manuel De La Sen, 2021. "Complementary Airflow Control of Oscillating Water Columns for Floating Offshore Wind Turbine Stabilization," Mathematics, MDPI, vol. 9(12), pages 1-15, June.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1364-:d:573920
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/12/1364/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/12/1364/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kamarlouei, M. & Gaspar, J.F. & Calvario, M. & Hallak, T.S. & Mendes, M.J.G.C. & Thiebaut, F. & Guedes Soares, C., 2020. "Experimental analysis of wave energy converters concentrically attached on a floating offshore platform," Renewable Energy, Elsevier, vol. 152(C), pages 1171-1185.
    2. Yulin Si & Hamid Reza Karimi & Huijun Gao, 2013. "Modeling and Parameter Analysis of the OC3-Hywind Floating Wind Turbine with a Tuned Mass Damper in Nacelle," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-10, December.
    3. Snyder, Brian & Kaiser, Mark J., 2009. "Ecological and economic cost-benefit analysis of offshore wind energy," Renewable Energy, Elsevier, vol. 34(6), pages 1567-1578.
    4. Hu, Jianjian & Zhou, Binzhen & Vogel, Christopher & Liu, Pin & Willden, Richard & Sun, Ke & Zang, Jun & Geng, Jing & Jin, Peng & Cui, Lin & Jiang, Bo & Collu, Maurizio, 2020. "Optimal design and performance analysis of a hybrid system combing a floating wind platform and wave energy converters," Applied Energy, Elsevier, vol. 269(C).
    5. Torresi, M. & Camporeale, S.M. & Strippoli, P.D. & Pascazio, G., 2008. "Accurate numerical simulation of a high solidity Wells turbine," Renewable Energy, Elsevier, vol. 33(4), pages 735-747.
    6. Jianxing Yu & Zhenmian Li & Yang Yu & Shuai Hao & Yiqin Fu & Yupeng Cui & Lixin Xu & Han Wu, 2020. "Design and Performance Assessment of Multi-Use Offshore Tension Leg Platform Equipped with an Embedded Wave Energy Converter System," Energies, MDPI, vol. 13(15), pages 1-21, August.
    7. Pérez-Collazo, C. & Greaves, D. & Iglesias, G., 2015. "A review of combined wave and offshore wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 141-153.
    8. Kaldellis, J.K. & Kapsali, M., 2013. "Shifting towards offshore wind energy—Recent activity and future development," Energy Policy, Elsevier, vol. 53(C), pages 136-148.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yu & Chen, Lifen & Zhao, Jie & Liu, Xiangjian & Ye, Xiaorong & Wang, Fei & Adcock, Thomas A.A. & Ning, Dezhi, 2023. "Power and dynamic performance of a floating multi-functional platform: An experimental study," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Payam Aboutalebi & Fares M’zoughi & Izaskun Garrido & Aitor J. Garrido, 2021. "Performance Analysis on the Use of Oscillating Water Column in Barge-Based Floating Offshore Wind Turbines," Mathematics, MDPI, vol. 9(5), pages 1-22, February.
    2. Jin, Peng & Zheng, Zhi & Zhou, Zhaomin & Zhou, Binzhen & Wang, Lei & Yang, Yang & Liu, Yingyi, 2023. "Optimization and evaluation of a semi-submersible wind turbine and oscillating body wave energy converters hybrid system," Energy, Elsevier, vol. 282(C).
    3. Gaspar, J.F. & Kamarlouei, M. & Thiebaut, F. & Guedes Soares, C., 2021. "Compensation of a hybrid platform dynamics using wave energy converters in different sea state conditions," Renewable Energy, Elsevier, vol. 177(C), pages 871-883.
    4. Zhou, Binzhen & Hu, Jianjian & Jin, Peng & Sun, Ke & Li, Ye & Ning, Dezhi, 2023. "Power performance and motion response of a floating wind platform and multiple heaving wave energy converters hybrid system," Energy, Elsevier, vol. 265(C).
    5. He, Guanghua & Luan, Zhengxiao & Zhang, Wei & He, Runhua & Liu, Chaogang & Yang, Kaibo & Yang, Changhao & Jing, Penglin & Zhang, Zhigang, 2023. "Review on research approaches for multi-point absorber wave energy converters," Renewable Energy, Elsevier, vol. 218(C).
    6. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2017. "Economic comparison of technological alternatives to harness offshore wind and wave energies," Energy, Elsevier, vol. 140(P1), pages 1121-1130.
    7. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2016. "Cost assessment methodology for combined wind and wave floating offshore renewable energy systems," Renewable Energy, Elsevier, vol. 97(C), pages 866-880.
    8. Yang, J.J. & He, E.M., 2020. "Coupled modeling and structural vibration control for floating offshore wind turbine," Renewable Energy, Elsevier, vol. 157(C), pages 678-694.
    9. Dhunny, A.Z. & Timmons, D.S. & Allam, Z. & Lollchund, M.R. & Cunden, T.S.M., 2020. "An economic assessment of near-shore wind farm development using a weather research forecast-based genetic algorithm model," Energy, Elsevier, vol. 201(C).
    10. Zhou, Yu & Chen, Lifen & Zhao, Jie & Liu, Xiangjian & Ye, Xiaorong & Wang, Fei & Adcock, Thomas A.A. & Ning, Dezhi, 2023. "Power and dynamic performance of a floating multi-functional platform: An experimental study," Energy, Elsevier, vol. 285(C).
    11. Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
    12. Zhu, Kai & Shi, Hongda & Michele, Simone & Han, Meng & Cao, Feifei, 2024. "Analytical study on dynamic performance of a hybrid system in real sea states," Energy, Elsevier, vol. 290(C).
    13. Wei, Zhiwen & Shi, Hongda & Cao, Feifei & Yu, Mingqi & Li, Ming & Chen, Zhen & Liu, Peng, 2024. "Study on the power performance of wave energy converters mounted around an offshore wind turbine jacket platform," Renewable Energy, Elsevier, vol. 221(C).
    14. Salo, Olli & Syri, Sanna, 2014. "What economic support is needed for Arctic offshore wind power?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 343-352.
    15. Poulsen, Thomas & Lema, Rasmus, 2017. "Is the supply chain ready for the green transformation? The case of offshore wind logistics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 758-771.
    16. Laura Castro-Santos & Ana Rute Bento & Carlos Guedes Soares, 2020. "The Economic Feasibility of Floating Offshore Wave Energy Farms in the North of Spain," Energies, MDPI, vol. 13(4), pages 1-19, February.
    17. da Silva, L.S.P. & Sergiienko, N.Y. & Cazzolato, B. & Ding, B., 2022. "Dynamics of hybrid offshore renewable energy platforms: Heaving point absorbers connected to a semi-submersible floating offshore wind turbine," Renewable Energy, Elsevier, vol. 199(C), pages 1424-1439.
    18. Nagababu, Garlapati & Kachhwaha, Surendra Singh & Savsani, Vimal, 2017. "Estimation of technical and economic potential of offshore wind along the coast of India," Energy, Elsevier, vol. 138(C), pages 79-91.
    19. David M. Skene & Nataliia Sergiienko & Boyin Ding & Benjamin Cazzolato, 2021. "The Prospect of Combining a Point Absorber Wave Energy Converter with a Floating Offshore Wind Turbine," Energies, MDPI, vol. 14(21), pages 1-24, November.
    20. Zhu, Kai & Shi, Hongda & Zheng, Siming & Michele, Simone & Cao, Feifei, 2023. "Hydrodynamic analysis of hybrid system with wind turbine and wave energy converter," Applied Energy, Elsevier, vol. 350(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1364-:d:573920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.