IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i8p1260-d393196.html
   My bibliography  Save this article

Evolution Model for Epidemic Diseases Based on the Kaplan-Meier Curve Determination

Author

Listed:
  • Jose M. Calabuig

    (Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain)

  • Luis M. García-Raffi

    (Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain)

  • Albert García-Valiente

    (Universitat de València, Doctor Moliner, 10, 46100 Burjassot (València), Spain)

  • Enrique A. Sánchez-Pérez

    (Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain)

Abstract

We show a simple model of the dynamics of a viral process based, on the determination of the Kaplan-Meier curve P of the virus. Together with the function of the newly infected individuals I , this model allows us to predict the evolution of the resulting epidemic process in terms of the number E of the death patients plus individuals who have overcome the disease. Our model has as a starting point the representation of E as the convolution of I and P . It allows introducing information about latent patients—patients who have already been cured but are still potentially infectious, and re-infected individuals. We also provide three methods for the estimation of P using real data, all of them based on the minimization of the quadratic error: the exact solution using the associated Lagrangian function and Karush-Kuhn-Tucker conditions, a Monte Carlo computational scheme acting on the total set of local minima, and a genetic algorithm for the approximation of the global minima. Although the calculation of the exact solutions of all the linear systems provided by the use of the Lagrangian naturally gives the best optimization result, the huge number of such systems that appear when the time variable increases makes it necessary to use numerical methods. We have chosen the genetic algorithms. Indeed, we show that the results obtained in this way provide good solutions for the model.

Suggested Citation

  • Jose M. Calabuig & Luis M. García-Raffi & Albert García-Valiente & Enrique A. Sánchez-Pérez, 2020. "Evolution Model for Epidemic Diseases Based on the Kaplan-Meier Curve Determination," Mathematics, MDPI, vol. 8(8), pages 1-24, August.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1260-:d:393196
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/8/1260/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/8/1260/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grant D. Brown & Jacob J. Oleson & Aaron T. Porter, 2016. "An empirically adjusted approach to reproductive number estimation for stochastic compartmental models: A case study of two Ebola outbreaks," Biometrics, The International Biometric Society, vol. 72(2), pages 335-343, June.
    2. Scrucca, Luca, 2013. "GA: A Package for Genetic Algorithms in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 53(i04).
    3. Eben Kenah, 2013. "Non-parametric survival analysis of infectious disease data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 277-304, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergeaud, Antonin & Raimbault, Juste, 2020. "An empirical analysis of the spatial variability of fuel prices in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 131-143.
    2. Lazzari, Florencia & Mor, Gerard & Cipriano, Jordi & Solsona, Francesc & Chemisana, Daniel & Guericke, Daniela, 2023. "Optimizing planning and operation of renewable energy communities with genetic algorithms," Applied Energy, Elsevier, vol. 338(C).
    3. Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
    4. Castellares, Fredy & Patrício, Silvio C. & Lemonte, Artur J. & Queiroz, Bernardo L., 2020. "On closed-form expressions to Gompertz–Makeham life expectancy," Theoretical Population Biology, Elsevier, vol. 134(C), pages 53-60.
    5. Dirick, Lore & Claeskens, Gerda & Baesens, Bart, 2015. "An Akaike information criterion for multiple event mixture cure models," European Journal of Operational Research, Elsevier, vol. 241(2), pages 449-457.
    6. Huan Yu & Jun Yang & Yu Zhao, 2018. "Reliability of nonrepairable phased-mission systems with common bus performance sharing," Journal of Risk and Reliability, , vol. 232(6), pages 647-660, December.
    7. Muhammet Burak Kılıç & Yusuf Şahin & Melih Burak Koca, 2021. "Genetic algorithm approach with an adaptive search space based on EM algorithm in two-component mixture Weibull parameter estimation," Computational Statistics, Springer, vol. 36(2), pages 1219-1242, June.
    8. Grubinger, Thomas & Zeileis, Achim & Pfeiffer, Karl-Peter, 2014. "evtree: Evolutionary Learning of Globally Optimal Classification and Regression Trees in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i01).
    9. Christopher Kath & Florian Ziel, 2020. "Optimal Order Execution in Intraday Markets: Minimizing Costs in Trade Trajectories," Papers 2009.07892, arXiv.org, revised Oct 2020.
    10. Sun, Mucun & Feng, Cong & Zhang, Jie, 2020. "Multi-distribution ensemble probabilistic wind power forecasting," Renewable Energy, Elsevier, vol. 148(C), pages 135-149.
    11. Imbert, Clément & Papp, John, 2020. "Costs and benefits of rural-urban migration: Evidence from India," Journal of Development Economics, Elsevier, vol. 146(C).
    12. Krityakierne, Tipaluck & Baowan, Duangkamon, 2020. "Aggregated GP-based Optimization for Contaminant Source Localization," Operations Research Perspectives, Elsevier, vol. 7(C).
    13. Faizeh Hatami & Shi Chen & Rajib Paul & Jean-Claude Thill, 2022. "Simulating and Forecasting the COVID-19 Spread in a U.S. Metropolitan Region with a Spatial SEIR Model," IJERPH, MDPI, vol. 19(23), pages 1-16, November.
    14. M. Revan Özkale & Atif Abbasi, 2022. "Iterative restricted OK estimator in generalized linear models and the selection of tuning parameters via MSE and genetic algorithm," Statistical Papers, Springer, vol. 63(6), pages 1979-2040, December.
    15. Marie V. Ozanne & Grant D. Brown & Angela J. Toepp & Breanna M. Scorza & Jacob J. Oleson & Mary E. Wilson & Christine A. Petersen, 2020. "Bayesian compartmental models and associated reproductive numbers for an infection with multiple transmission modes," Biometrics, The International Biometric Society, vol. 76(3), pages 711-721, September.
    16. Fabio Blasutto & David de la Croix, 2023. "Catholic Censorship and the Demise of Knowledge Production in Early Modern Italy," The Economic Journal, Royal Economic Society, vol. 133(656), pages 2899-2924.
    17. Maarten J. Punt & Brooks A. Kaiser, 2021. "Seismic Shifts from Regulations: Spatial Trade-offs in Marine Mammals and the Value of Information from Hydrocarbon Seismic Surveying," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(3), pages 553-585, November.
    18. Schwamborn, R. & Mildenberger, T.K. & Taylor, M.H., 2019. "Assessing sources of uncertainty in length-based estimates of body growth in populations of fishes and macroinvertebrates with bootstrapped ELEFAN," Ecological Modelling, Elsevier, vol. 393(C), pages 37-51.
    19. Teodora Basile & Antonio Maria Amendolagine & Luigi Tarricone, 2022. "Rootstock’s and Cover-Crops’ Influence on Grape: A NIR-Based ANN Classification Model," Agriculture, MDPI, vol. 13(1), pages 1-11, December.
    20. Nikolaos Nagkoulis & Konstantinos L. Katsifarakis, 2022. "Using Game Theory to Assign Groundwater Pumping Schedules," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(5), pages 1571-1586, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1260-:d:393196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.