IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i16p3202-d259359.html
   My bibliography  Save this article

Reliability Assessment of Distribution Networks with Optimal Coordination of Distributed Generation, Energy Storage and Demand Management

Author

Listed:
  • Alberto Escalera

    (IMDEA Energy Institute, 28935-Mostoles, Madrid, Spain
    Department of Electrical Engineering, University Carlos III de Madrid, Avda. Universidad 30, 28911-Leganés, Madrid, Spain)

  • Edgardo D. Castronuovo

    (Department of Electrical Engineering, University Carlos III de Madrid, Avda. Universidad 30, 28911-Leganés, Madrid, Spain)

  • Milan Prodanović

    (IMDEA Energy Institute, 28935-Mostoles, Madrid, Spain)

  • Javier Roldán-Pérez

    (IMDEA Energy Institute, 28935-Mostoles, Madrid, Spain)

Abstract

Modern power distribution networks assume the connection of Distributed Generators (DGs) and energy storage systems as well as the application of advanced demand management techniques. After a network fault these technologies and techniques can contribute individually to the supply restoration of the interrupted areas and help improve the network reliability. However, the optimal coordination of control actions between these resources will lead to their most efficient use, maximizing the network reliability improvement. Until now, the effect of such networks with optimal coordination has not been considered in reliability studies. In this paper, DGs, energy storage and demand management techniques are jointly modelled and evaluated for reliability assessment. A novel methodology is proposed for the calculation of the reliability indices. It evaluates the optimal coordination of energy storage and demand management in order to reduce the energy-not-supplied during outages. The formulation proposed for the calculation of the reliability indices (including the modelling of optimal coordination) is described in detail. The methodology is applied to two distribution systems combining DGs, energy storage and demand management. Results demonstrate the capability of the proposed method to assess the reliability of such type of networks and emphasise the impact of the optimal coordination on reliability.

Suggested Citation

  • Alberto Escalera & Edgardo D. Castronuovo & Milan Prodanović & Javier Roldán-Pérez, 2019. "Reliability Assessment of Distribution Networks with Optimal Coordination of Distributed Generation, Energy Storage and Demand Management," Energies, MDPI, vol. 12(16), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3202-:d:259359
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/16/3202/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/16/3202/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Escalera, Alberto & Hayes, Barry & Prodanović, Milan, 2018. "A survey of reliability assessment techniques for modern distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 344-357.
    2. Yilun Shang, 2018. "Resilient Multiscale Coordination Control against Adversarial Nodes," Energies, MDPI, vol. 11(7), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gustavo L. Aschidamini & Gederson A. da Cruz & Mariana Resener & Maicon J. S. Ramos & Luís A. Pereira & Bibiana P. Ferraz & Sérgio Haffner & Panos M. Pardalos, 2022. "Expansion Planning of Power Distribution Systems Considering Reliability: A Comprehensive Review," Energies, MDPI, vol. 15(6), pages 1-29, March.
    2. Fitsum Salehu Kebede & Jean-Christophe Olivier & Salvy Bourguet & Mohamed Machmoum, 2021. "Reliability Evaluation of Renewable Power Systems through Distribution Network Power Outage Modelling," Energies, MDPI, vol. 14(11), pages 1-25, May.
    3. Gustavo L. Aschidamini & Gederson A. da Cruz & Mariana Resener & Roberto C. Leborgne & Luís A. Pereira, 2022. "A Framework for Reliability Assessment in Expansion Planning of Power Distribution Systems," Energies, MDPI, vol. 15(14), pages 1-24, July.
    4. Zhang, Xizheng & Wang, Zeyu & Lu, Zhangyu, 2022. "Multi-objective load dispatch for microgrid with electric vehicles using modified gravitational search and particle swarm optimization algorithm," Applied Energy, Elsevier, vol. 306(PA).
    5. Hak-Ju Lee & Byeong-Chan Oh & Seok-Woong Kim & Sung-Yul Kim, 2020. "V2G Strategy for Improvement of Distribution Network Reliability Considering Time Space Network of EVs," Energies, MDPI, vol. 13(17), pages 1-19, August.
    6. Miroslaw Parol & Jacek Wasilewski & Tomasz Wojtowicz & Bartlomiej Arendarski & Przemyslaw Komarnicki, 2022. "Reliability Analysis of MV Electric Distribution Networks Including Distributed Generation and ICT Infrastructure," Energies, MDPI, vol. 15(14), pages 1-34, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong-Hui Ko & Jaekwan Chung & Kwang-Soo Lee & Jin-Soon Park & Jin-Hak Yi, 2019. "Current Policy and Technology for Tidal Current Energy in Korea," Energies, MDPI, vol. 12(9), pages 1-15, May.
    2. Gökay Bayrak & Davut Ertekin & Hassan Haes Alhelou & Pierluigi Siano, 2021. "A Real-Time Energy Management System Design for a Developed PV-Based Distributed Generator Considering the Grid Code Requirements in Turkey," Energies, MDPI, vol. 14(20), pages 1-21, October.
    3. Seung-Hyeok Shin & Won-Sok Yoo & Hojong Choi, 2019. "Development of Public Key Cryptographic Algorithm Using Matrix Pattern for Tele-Ultrasound Applications," Mathematics, MDPI, vol. 7(8), pages 1-19, August.
    4. Cheng-Yu Tang & Jun-Ting Lin, 2019. "Bidirectional Power Flow Control of a Multi Input Converter for Energy Storage System," Energies, MDPI, vol. 12(19), pages 1-16, September.
    5. Huijia Yang & Weiguang Fan & Guangyu Qin & Zhenyu Zhao, 2021. "A Fuzzy-ANP Approach for Comprehensive Benefit Evaluation of Grid-Side Commercial Storage Project," Energies, MDPI, vol. 14(4), pages 1-17, February.
    6. Haneul Ko & Jaewook Lee & Seokwon Jang & Joonwoo Kim & Sangheon Pack, 2019. "Energy Efficient Cooperative Computation Algorithm in Energy Harvesting Internet of Things," Energies, MDPI, vol. 12(21), pages 1-19, October.
    7. Tadeusz Platek, 2019. "Analysis of Ripple Current in the Capacitors of Active Power Filters," Energies, MDPI, vol. 12(23), pages 1-31, November.
    8. Saheed Lekan Gbadamosi & Nnamdi I. Nwulu, 2020. "Optimal Power Dispatch and Reliability Analysis of Hybrid CHP-PV-Wind Systems in Farming Applications," Sustainability, MDPI, vol. 12(19), pages 1-16, October.
    9. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    10. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    11. Hassan Raza & Sakander Hayat & Muhammad Imran & Xiang-Feng Pan, 2019. "Fault-Tolerant Resolvability and Extremal Structures of Graphs," Mathematics, MDPI, vol. 7(1), pages 1-19, January.
    12. Foad H. Gandoman & Emad M. Ahmed & Ziad M. Ali & Maitane Berecibar & Ahmed F. Zobaa & Shady H. E. Abdel Aleem, 2021. "Reliability Evaluation of Lithium-Ion Batteries for E-Mobility Applications from Practical and Technical Perspectives: A Case Study," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
    13. Jayne Lois G. San Juan & Kathleen B. Aviso & Raymond R. Tan & Charlle L. Sy, 2019. "A Multi-Objective Optimization Model for the Design of Biomass Co-Firing Networks Integrating Feedstock Quality Considerations," Energies, MDPI, vol. 12(12), pages 1-24, June.
    14. Gustavo L. Aschidamini & Gederson A. da Cruz & Mariana Resener & Maicon J. S. Ramos & Luís A. Pereira & Bibiana P. Ferraz & Sérgio Haffner & Panos M. Pardalos, 2022. "Expansion Planning of Power Distribution Systems Considering Reliability: A Comprehensive Review," Energies, MDPI, vol. 15(6), pages 1-29, March.
    15. Junwei Cao & Wanlu Zhang & Zeqing Xiao & Haochen Hua, 2019. "Reactive Power Optimization for Transient Voltage Stability in Energy Internet via Deep Reinforcement Learning Approach," Energies, MDPI, vol. 12(8), pages 1-17, April.
    16. Jeng-Wei Lin & Shih-wei Liao & Fang-Yie Leu, 2019. "Sensor Data Compression Using Bounded Error Piecewise Linear Approximation with Resolution Reduction," Energies, MDPI, vol. 12(13), pages 1-20, June.
    17. Dušan Medveď & Michal Kolcun & Marek Pavlík & Ľubomír Beňa & Marián Mešter, 2021. "Analysis of Prosumer Behavior in the Electrical Network," Energies, MDPI, vol. 14(24), pages 1-20, December.
    18. Chen, Qian & Zuo, Lili & Wu, Changchun & Cao, Yankai & Bu, Yaran & Chen, Feng & Sadiq, Rehan, 2021. "Supply reliability assessment of a gas pipeline network under stochastic demands," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    19. Wu, Y.J. & Liang, X.Y. & Huang, T. & Lin, Z.W. & Li, Z.X. & Hossain, Mohammad Farhad, 2021. "A hierarchical framework for renewable energy sources consumption promotion among microgrids through two-layer electricity prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    20. Africa Lopez-Rey & Severo Campinez-Romero & Rosario Gil-Ortego & Antonio Colmenar-Santos, 2019. "Evaluation of Supply–Demand Adaptation of Photovoltaic–Wind Hybrid Plants Integrated into an Urban Environment," Energies, MDPI, vol. 12(9), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:16:p:3202-:d:259359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.