IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i6p934-d368568.html
   My bibliography  Save this article

A Competitive Memory Paradigm for Multimodal Optimization Driven by Clustering and Chaos

Author

Listed:
  • Jorge Gálvez

    (Departamento de Electrónica, Universidad de Guadalajara, CUCEI, Av. Revolución 1500, Guadalajara C.P. 44430, Jal, Mexico)

  • Erik Cuevas

    (Departamento de Electrónica, Universidad de Guadalajara, CUCEI, Av. Revolución 1500, Guadalajara C.P. 44430, Jal, Mexico)

  • Krishna Gopal Dhal

    (Department of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, West Bengal 721101, India)

Abstract

Evolutionary Computation Methods (ECMs) are proposed as stochastic search methods to solve complex optimization problems where classical optimization methods are not suitable. Most of the proposed ECMs aim to find the global optimum for a given function. However, from a practical point of view, in engineering, finding the global optimum may not always be useful, since it may represent solutions that are not physically, mechanically or even structurally realizable. Commonly, the evolutionary operators of ECMs are not designed to efficiently register multiple optima by executing them a single run. Under such circumstances, there is a need to incorporate certain mechanisms to allow ECMs to maintain and register multiple optima at each generation executed in a single run. On the other hand, the concept of dominance found in animal behavior indicates the level of social interaction among two animals in terms of aggressiveness. Such aggressiveness keeps two or more individuals as distant as possible from one another, where the most dominant individual prevails as the other withdraws. In this paper, the concept of dominance is computationally abstracted in terms of a data structure called “competitive memory” to incorporate multimodal capabilities into the evolutionary operators of the recently proposed Cluster-Chaotic-Optimization (CCO). Under CCO, the competitive memory is implemented as a memory mechanism to efficiently register and maintain all possible optimal values within a single execution of the algorithm. The performance of the proposed method is numerically compared against several multimodal schemes over a set of benchmark functions. The experimental study suggests that the proposed approach outperforms its competitors in terms of robustness, quality, and precision.

Suggested Citation

  • Jorge Gálvez & Erik Cuevas & Krishna Gopal Dhal, 2020. "A Competitive Memory Paradigm for Multimodal Optimization Driven by Clustering and Chaos," Mathematics, MDPI, vol. 8(6), pages 1-29, June.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:934-:d:368568
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/6/934/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/6/934/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fionn Murtagh & Pierre Legendre, 2014. "Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 274-295, October.
    2. Erik Cuevas & Mauricio González & Daniel Zaldivar & Marco Pérez-Cisneros & Guillermo García, 2012. "An Algorithm for Global Optimization Inspired by Collective Animal Behavior," Discrete Dynamics in Nature and Society, Hindawi, vol. 2012, pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maurizio Vichi & Carlo Cavicchia & Patrick J. F. Groenen, 2022. "Hierarchical Means Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 553-577, November.
    2. Jiao Jieying & Hu Guanyu & Yan Jun, 2021. "A Bayesian marked spatial point processes model for basketball shot chart," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(2), pages 77-90, June.
    3. Paulus, Michal & Kristoufek, Ladislav, 2015. "Worldwide clustering of the corruption perception," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 351-358.
    4. Hyeri Choi & Min Jae Park, 2019. "Evaluating the Efficiency of Governmental Excellence for Social Progress: Focusing on Low- and Lower-Middle-Income Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 141(1), pages 111-130, January.
    5. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    6. Grzegorz Maciejewski & Mirosława Malinowska & Barbara Kucharska & Michał Kucia & Beata Kolny, 2021. "Sustainable Development as a Factor Differentiating Consumer Behavior: The Case of Poland," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 934-948.
    7. Giger, Markus & Mutea, Emily & Kiteme, Boniface & Eckert, Sandra & Anseeuw, Ward & Zaehringer, Julie G., 2020. "Large agricultural investments in Kenya’s Nanyuki Area: Inventory and analysis of business models," Land Use Policy, Elsevier, vol. 99(C).
    8. Walker, Nathan L. & Styles, David & Coughlan, Paul & Williams, A. Prysor, 2022. "Cross-sector sustainability benchmarking of major utilities in the United Kingdom," Utilities Policy, Elsevier, vol. 78(C).
    9. Pierre H. H. Schneeberger & Morgan Gueuning & Sophie Welsche & Eveline Hürlimann & Julian Dommann & Cécile Häberli & Jürg E. Frey & Somphou Sayasone & Jennifer Keiser, 2022. "Different gut microbial communities correlate with efficacy of albendazole-ivermectin against soil-transmitted helminthiases," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Abang Zainoren Abang Abdurahman & Syerina Azlin Md Nasir & Wan Fairos Wan Yaacob & Serah Jaya & Suhaili Mokhtar, 2021. "Spatio-Temporal Clustering of Sarawak Malaysia Total Protected Area Visitors," Sustainability, MDPI, vol. 13(21), pages 1-19, October.
    11. Mulu Abraha Woldegiorgis & Janet E. Hiller & Wubegzier Mekonnen & Jahar Bhowmik, 2018. "Disparities in maternal health services in sub-Saharan Africa," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 63(4), pages 525-535, May.
    12. Monika Stanny & Łukasz Komorowski & Andrzej Rosner, 2021. "The Socio-Economic Heterogeneity of Rural Areas: Towards a Rural Typology of Poland," Energies, MDPI, vol. 14(16), pages 1-23, August.
    13. Renato Amorim, 2015. "Feature Relevance in Ward’s Hierarchical Clustering Using the L p Norm," Journal of Classification, Springer;The Classification Society, vol. 32(1), pages 46-62, April.
    14. Anca Gabriela Ilie & Marinela Luminita Emanuela Zlatea & Cristina Negreanu & Dan Dumitriu & Alma Pentescu, 2023. "Reliance on Russian Federation Energy Imports and Renewable Energy in the European Union," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(64), pages 780-780, August.
    15. Luiza Ossowska & Dorota Janiszewska & Natalia Bartkowiak-Bakun & Grzegorz Kwiatkowski, 2020. "Energy Consumption Versus Greenhouse Gas Emissions in EU," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 185-198.
    16. Lerato Lerato & Thomas Niesler, 2015. "Clustering Acoustic Segments Using Multi-Stage Agglomerative Hierarchical Clustering," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-24, October.
    17. Jon Ellingsen & Vegard H. Larsen & Leif Anders Thorsrud, 2020. "News Media vs. FRED-MD for Macroeconomic Forecasting," CESifo Working Paper Series 8639, CESifo.
    18. Sokhna Dieng & Pierre Michel & Abdoulaye Guindo & Kankoe Sallah & El-Hadj Ba & Badara Cissé & Maria Patrizia Carrieri & Cheikh Sokhna & Paul Milligan & Jean Gaudart, 2020. "Application of Functional Data Analysis to Identify Patterns of Malaria Incidence, to Guide Targeted Control Strategies," IJERPH, MDPI, vol. 17(11), pages 1-23, June.
    19. Jill F. Lundell & Brennan Bean & Jürgen Symanzik, 2023. "Let’s talk about the weather: a cluster-based approach to weather forecast accuracy," Computational Statistics, Springer, vol. 38(3), pages 1135-1155, September.
    20. Dong, Xinghui & Li, Jia & Gao, Di & Zheng, Kai, 2020. "Wind speed modeling for cascade clusters of wind turbines part 1: The cascade clusters of wind turbines," Energy, Elsevier, vol. 205(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:934-:d:368568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.