IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-10099-y.html
   My bibliography  Save this article

Inter-outbreak stability reflects the size of the susceptible pool and forecasts magnitudes of seasonal epidemics

Author

Listed:
  • Martin Rypdal

    (UiT—The Arctic University of Norway)

  • George Sugihara

    (University of California San Diego)

Abstract

For dengue fever and other seasonal epidemics we show how the stability of the preceding inter-outbreak period can predict subsequent total outbreak magnitude, and that a feasible stability metric can be computed from incidence data alone. As an observable of a dynamical system, incidence data contains information about the underlying mechanisms: climatic drivers, changing serotype pools, the ecology of the vector populations, and evolving viral strains. We present mathematical arguments to suggest a connection between stability measured in incidence data during the inter-outbreak period and the size of the effective susceptible population. The method is illustrated with an analysis of dengue incidence in San Juan, Puerto Rico, where forecasts can be made as early as three to four months ahead of an outbreak. These results have immediate significance for public health planning, and can be used in combination with existing forecasting methods and more comprehensive dengue models.

Suggested Citation

  • Martin Rypdal & George Sugihara, 2019. "Inter-outbreak stability reflects the size of the susceptible pool and forecasts magnitudes of seasonal epidemics," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10099-y
    DOI: 10.1038/s41467-019-10099-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-10099-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-10099-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ning-Ning & Qiu, Shui-Han & Zhong, Xiao Wen & Di, Zeng-Ru, 2023. "Epidemic thresholds identification of susceptible-infected-recovered model based on the Eigen Microstate," Applied Mathematics and Computation, Elsevier, vol. 449(C).
    2. Gergo Pinter & Imre Felde & Amir Mosavi & Pedram Ghamisi & Richard Gloaguen, 2020. "COVID-19 Pandemic Prediction for Hungary; A Hybrid Machine Learning Approach," Mathematics, MDPI, vol. 8(6), pages 1-20, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10099-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.