IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v54y2003i8d10.1057_palgrave.jors.2601575.html
   My bibliography  Save this article

Algorithms for parallel machine scheduling: a case study of the tracking and data relay satellite system

Author

Listed:
  • S Rojanasoonthon

    (Graduate Program in Operations Research, University of Texas)

  • J F Bard

    (Graduate Program in Operations Research, University of Texas)

  • S D Reddy

    (Computer Sciences Corporation, New Carrollton)

Abstract

This paper presents two algorithms for scheduling a set of jobs with multiple priorities on non-homogeneous, parallel machines. The application of interest involves the tracking and data relay satellite system run by the US National Aeronautics and Space Administration. This system acts as a relay platform for Earth-orbiting vehicles that wish to communicate periodically with ground stations. The problem is introduced and then compared to other more common scheduling and routing problems. Next, a mixed-integer linear programming formulation is given but was found to be too difficult to solve for instances of realistic size. This led to the development of a dynamic programming-like heuristic and a greedy randomized adaptive search procedure. Each is described in some detail and then compared using data from a typical busy day scenario.

Suggested Citation

  • S Rojanasoonthon & J F Bard & S D Reddy, 2003. "Algorithms for parallel machine scheduling: a case study of the tracking and data relay satellite system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 806-821, August.
  • Handle: RePEc:pal:jorsoc:v:54:y:2003:i:8:d:10.1057_palgrave.jors.2601575
    DOI: 10.1057/palgrave.jors.2601575
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jors.2601575
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/palgrave.jors.2601575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, T. C. E. & Sin, C. C. S., 1990. "A state-of-the-art review of parallel-machine scheduling research," European Journal of Operational Research, Elsevier, vol. 47(3), pages 271-292, August.
    2. R. Ramesh & Yong-Seok Yoon & Mark H. Karwan, 1992. "An Optimal Algorithm for the Orienteering Tour Problem," INFORMS Journal on Computing, INFORMS, vol. 4(2), pages 155-165, May.
    3. Golden, Bruce & Levy, Larry & Dahl, Roy, 1981. "Two generalizations of the traveling salesman problem," Omega, Elsevier, vol. 9(4), pages 439-441.
    4. Bruce L. Golden & Larry Levy & Rakesh Vohra, 1987. "The orienteering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(3), pages 307-318, June.
    5. Gabrel, Virginie, 1995. "Scheduling jobs within time windows on identical parallel machines: New model and algorithms," European Journal of Operational Research, Elsevier, vol. 83(2), pages 320-329, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonathan F. Bard & Siwate Rojanasoonthon, 2006. "A branch‐and‐price algorithm for parallel machine scheduling with time windows and job priorities," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(1), pages 24-44, February.
    2. Siwate Rojanasoonthon & Jonathan Bard, 2005. "A GRASP for Parallel Machine Scheduling with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 32-51, February.
    3. J N D Gupta & A J Ruiz-torres & S Webster, 2003. "Minimizing maximum tardiness and number of tardy jobs on parallel machines subject to minimum flow-time," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(12), pages 1263-1274, December.
    4. Elena Nechita & Gloria Cerasela Crişan & Laszlo Barna Iantovics & Yitong Huang, 2020. "On the Resilience of Ant Algorithms. Experiment with Adapted MMAS on TSP," Mathematics, MDPI, vol. 8(5), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siwate Rojanasoonthon & Jonathan Bard, 2005. "A GRASP for Parallel Machine Scheduling with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 32-51, February.
    2. Renaud, Jacques & Boctor, Fayez F., 1998. "An efficient composite heuristic for the symmetric generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 108(3), pages 571-584, August.
    3. Kobeaga, Gorka & Rojas-Delgado, Jairo & Merino, María & Lozano, Jose A., 2024. "A revisited branch-and-cut algorithm for large-scale orienteering problems," European Journal of Operational Research, Elsevier, vol. 313(1), pages 44-68.
    4. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "Traveling Salesman Problems with Profits," Transportation Science, INFORMS, vol. 39(2), pages 188-205, May.
    5. Krzysztof Ostrowski & Joanna Karbowska-Chilinska & Jolanta Koszelew & Pawel Zabielski, 2017. "Evolution-inspired local improvement algorithm solving orienteering problem," Annals of Operations Research, Springer, vol. 253(1), pages 519-543, June.
    6. Rodríguez, Beatriz & Molina, Julián & Pérez, Fátima & Caballero, Rafael, 2012. "Interactive design of personalised tourism routes," Tourism Management, Elsevier, vol. 33(4), pages 926-940.
    7. Jesse Pietz & Johannes O. Royset, 2013. "Generalized orienteering problem with resource dependent rewards," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(4), pages 294-312, June.
    8. H Tang & E Miller-Hooks, 2005. "Algorithms for a stochastic selective travelling salesperson problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 439-452, April.
    9. Kataoka, Seiji & Yamada, Takeo & Morito, Susumu, 1998. "Minimum directed 1-subtree relaxation for score orienteering problem," European Journal of Operational Research, Elsevier, vol. 104(1), pages 139-153, January.
    10. E. Erkut & J. Zhang, 1996. "The maximum collection problem with time‐dependent rewards," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(5), pages 749-763, August.
    11. Gendreau, Michel & Laporte, Gilbert & Semet, Frederic, 1998. "A tabu search heuristic for the undirected selective travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 539-545, April.
    12. Chao, I-Ming & Golden, Bruce L. & Wasil, Edward A., 1996. "A fast and effective heuristic for the orienteering problem," European Journal of Operational Research, Elsevier, vol. 88(3), pages 475-489, February.
    13. Vansteenwegen, Pieter & Souffriau, Wouter & Berghe, Greet Vanden & Oudheusden, Dirk Van, 2009. "A guided local search metaheuristic for the team orienteering problem," European Journal of Operational Research, Elsevier, vol. 196(1), pages 118-127, July.
    14. Angelelli, E. & Archetti, C. & Vindigni, M., 2014. "The Clustered Orienteering Problem," European Journal of Operational Research, Elsevier, vol. 238(2), pages 404-414.
    15. Kim, Hyunjoon & Kim, Byung-In, 2022. "Hybrid dynamic programming with bounding algorithm for the multi-profit orienteering problem," European Journal of Operational Research, Elsevier, vol. 303(2), pages 550-566.
    16. W L Pearn & S H Chung & M H Yang & Y H Chen, 2004. "Algorithms for the wafer probing scheduling problem with sequence-dependent set-up time and due date restrictions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(11), pages 1194-1207, November.
    17. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    18. Jonathan F. Bard & Siwate Rojanasoonthon, 2006. "A branch‐and‐price algorithm for parallel machine scheduling with time windows and job priorities," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(1), pages 24-44, February.
    19. Yalaoui, F. & Chu, C., 2006. "New exact method to solve the Pm/rj/[summation operator]Cj schedule problem," International Journal of Production Economics, Elsevier, vol. 100(1), pages 168-179, March.
    20. Dang, Duc-Cuong & Guibadj, Rym Nesrine & Moukrim, Aziz, 2013. "An effective PSO-inspired algorithm for the team orienteering problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 332-344.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:54:y:2003:i:8:d:10.1057_palgrave.jors.2601575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.