IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v266y2015icp1093-1101.html
   My bibliography  Save this article

An efficient three-step method to solve system of nonlinear equations

Author

Listed:
  • Esmaeili, H.
  • Ahmadi, M.

Abstract

In this paper, we suggest a sixth order convergence three-step method to solve system of nonlinear equations. Every iteration of the method requires two function evaluations, two first Fréchet derivative evaluations and two matrix inversions. Hence, the efficiency index is 61/(2n+6n2+43n3), which is better than that of other sixth order methods. The advantages of the method lie in the feature that this technique not only achieves an approximate solution with high accuracy, but also improves the calculation speed. Also, under several mild conditions the convergence analysis of the proposed method is provided. An efficient error estimation is presented for the approximate solution. Numerical examples are included to demonstrate the validity and applicability of the method and the comparisons are made with the existing results.

Suggested Citation

  • Esmaeili, H. & Ahmadi, M., 2015. "An efficient three-step method to solve system of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1093-1101.
  • Handle: RePEc:eee:apmaco:v:266:y:2015:i:c:p:1093-1101
    DOI: 10.1016/j.amc.2015.05.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315007006
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.05.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abbasbandy, Saeid & Bakhtiari, Parisa & Cordero, Alicia & Torregrosa, Juan R. & Lotfi, Taher, 2016. "New efficient methods for solving nonlinear systems of equations with arbitrary even order," Applied Mathematics and Computation, Elsevier, vol. 287, pages 94-103.
    2. Bahl, Ashu & Cordero, Alicia & Sharma, Rajni & R. Torregrosa, Juan, 2019. "A novel bi-parametric sixth order iterative scheme for solving nonlinear systems and its dynamics," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 147-166.
    3. Sharma, Janak Raj & Sharma, Rajni & Bahl, Ashu, 2016. "An improved Newton–Traub composition for solving systems of nonlinear equations," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 98-110.
    4. Ramandeep Behl & Ioannis K. Argyros & Jose Antonio Tenreiro Machado, 2020. "Ball Comparison between Three Sixth Order Methods for Banach Space Valued Operators," Mathematics, MDPI, vol. 8(5), pages 1-12, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:266:y:2015:i:c:p:1093-1101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.