IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i4p597-d346057.html
   My bibliography  Save this article

Multi-Partitions Subspace Clustering

Author

Listed:
  • Vincent Vandewalle

    (Biostatistics Department, Univ. Lille, CHU Lille, ULR 2694—METRICS: Évaluation des Technologies de Santé et des Pratiques MéDicales, F-59000 Lille, France
    Inria Lille—Nord Europe, 59650 Villeneuve d’Ascq, France)

Abstract

In model based clustering, it is often supposed that only one clustering latent variable explains the heterogeneity of the whole dataset. However, in many cases several latent variables could explain the heterogeneity of the data at hand. Finding such class variables could result in a richer interpretation of the data. In the continuous data setting, a multi-partition model based clustering is proposed. It assumes the existence of several latent clustering variables, each one explaining the heterogeneity of the data with respect to some clustering subspace. It allows to simultaneously find the multi-partitions and the related subspaces. Parameters of the model are estimated through an EM algorithm relying on a probabilistic reinterpretation of the factorial discriminant analysis. A model choice strategy relying on the BIC criterion is proposed to select to number of subspaces and the number of clusters by subspace. The obtained results are thus several projections of the data, each one conveying its own clustering of the data. Model’s behavior is illustrated on simulated and real data.

Suggested Citation

  • Vincent Vandewalle, 2020. "Multi-Partitions Subspace Clustering," Mathematics, MDPI, vol. 8(4), pages 1-18, April.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:597-:d:346057
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/4/597/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/4/597/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Biernacki, Christophe & Chrétien, Stéphane, 2003. "Degeneracy in the maximum likelihood estimation of univariate Gaussian mixtures with EM," Statistics & Probability Letters, Elsevier, vol. 61(4), pages 373-382, February.
    2. Michael E. Tipping & Christopher M. Bishop, 1999. "Probabilistic Principal Component Analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 611-622.
    3. Galimberti, Giuliano & Soffritti, Gabriele, 2007. "Model-based methods to identify multiple cluster structures in a data set," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 520-536, September.
    4. Bouveyron, C. & Girard, S. & Schmid, C., 2007. "High-dimensional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 502-519, September.
    5. Marbac, Matthieu & Vandewalle, Vincent, 2019. "A tractable multi-partitions clustering," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 167-179.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrews, Jeffrey L., 2018. "Addressing overfitting and underfitting in Gaussian model-based clustering," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 160-171.
    2. Carlo Cavicchia & Maurizio Vichi & Giorgia Zaccaria, 2022. "Gaussian mixture model with an extended ultrametric covariance structure," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 399-427, June.
    3. Wang, Zihan & Daeipour, Mohamad & Xu, Hongyi, 2023. "Quantification and propagation of Aleatoric uncertainties in topological structures," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    4. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    5. Charles Bouveyron & Julien Jacques, 2011. "Model-based clustering of time series in group-specific functional subspaces," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 5(4), pages 281-300, December.
    6. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    7. Dorota Toczydlowska & Gareth W. Peters & Man Chung Fung & Pavel V. Shevchenko, 2017. "Stochastic Period and Cohort Effect State-Space Mortality Models Incorporating Demographic Factors via Probabilistic Robust Principal Components," Risks, MDPI, vol. 5(3), pages 1-77, July.
    8. Joseph Ndong & Ted Soubdhan, 2022. "Extracting Statistical Properties of Solar and Photovoltaic Power Production for the Scope of Building a Sophisticated Forecasting Framework," Forecasting, MDPI, vol. 5(1), pages 1-21, December.
    9. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    10. Regad, L. & Guyon, F. & Maupetit, J. & Tufféry, P. & Camproux, A.C., 2008. "A Hidden Markov Model applied to the protein 3D structure analysis," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3198-3207, February.
    11. Chen, Tao & Martin, Elaine & Montague, Gary, 2009. "Robust probabilistic PCA with missing data and contribution analysis for outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3706-3716, August.
    12. Cathy Maugis & Gilles Celeux & Marie-Laure Martin-Magniette, 2009. "Variable Selection for Clustering with Gaussian Mixture Models," Biometrics, The International Biometric Society, vol. 65(3), pages 701-709, September.
    13. Chen, Andrew Y. & McCoy, Jack, 2024. "Missing values handling for machine learning portfolios," Journal of Financial Economics, Elsevier, vol. 155(C).
    14. Wang, Shao-Hsuan & Huang, Su-Yun, 2022. "Perturbation theory for cross data matrix-based PCA," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    15. Cook, R. Dennis, 2022. "A slice of multivariate dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    16. Alessandro Casa & Andrea Cappozzo & Michael Fop, 2022. "Group-Wise Shrinkage Estimation in Penalized Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 648-674, November.
    17. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
    18. Ligon, Ethan, 2017. "Estimating household welfare from disaggregate expenditures," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt5gc4h1fm, Department of Agricultural & Resource Economics, UC Berkeley.
    19. Jiaju Miao & Pawel Polak, 2023. "Online Ensemble of Models for Optimal Predictive Performance with Applications to Sector Rotation Strategy," Papers 2304.09947, arXiv.org.
    20. Marconi, Gabriele, 2014. "European higher education policies and the problem of estimating a complex model with a small cross-section," MPRA Paper 87600, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:597-:d:346057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.