IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i5p843-d361961.html
   My bibliography  Save this article

Existence and Stability Analysis for Fractional Impulsive Caputo Difference-Sum Equations with Periodic Boundary Condition

Author

Listed:
  • Rujira Ouncharoen

    (Research Center in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand)

  • Saowaluck Chasreechai

    (Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand)

  • Thanin Sitthiwirattham

    (Mathematics Department, Faculty of Science and Technology, Suan Dusit University, Bangkok 10300, Thailand)

Abstract

In this paper, by using the Banach contraction principle and the Schauder’s fixed point theorem, we investigate existence results for a fractional impulsive sum-difference equations with periodic boundary conditions. Moreover, we also establish different kinds of Ulam stability for this problem. An example is also constructed to demonstrate the importance of these results.

Suggested Citation

  • Rujira Ouncharoen & Saowaluck Chasreechai & Thanin Sitthiwirattham, 2020. "Existence and Stability Analysis for Fractional Impulsive Caputo Difference-Sum Equations with Periodic Boundary Condition," Mathematics, MDPI, vol. 8(5), pages 1-17, May.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:843-:d:361961
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/5/843/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/5/843/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Guo-Cheng & Baleanu, Dumitru & Xie, He-Ping & Chen, Fu-Lai, 2016. "Chaos synchronization of fractional chaotic maps based on the stability condition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 374-383.
    2. Yanli Chen & Yongxiang Li, 2014. "The Existence of Positive Solutions for Boundary Value Problem of Nonlinear Fractional Differential Equations," Abstract and Applied Analysis, Hindawi, vol. 2014, pages 1-7, August.
    3. Saowaluk Chasreechai & Chanakarn Kiataramkul & Thanin Sitthiwirattham, 2015. "On Nonlinear Fractional Sum-Difference Equations via Fractional Sum Boundary Conditions Involving Different Orders," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-8, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saowaluck Chasreechai & Thanin Sitthiwirattham, 2019. "On Separate Fractional Sum-Difference Equations with n -Point Fractional Sum-Difference Boundary Conditions via Arbitrary Different Fractional Orders," Mathematics, MDPI, vol. 7(5), pages 1-16, May.
    2. Khennaoui, Amina-Aicha & Ouannas, Adel & Bendoukha, Samir & Grassi, Giuseppe & Lozi, René Pierre & Pham, Viet-Thanh, 2019. "On fractional–order discrete–time systems: Chaos, stabilization and synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 150-162.
    3. Jahanshahi, Hadi & Yousefpour, Amin & Munoz-Pacheco, Jesus M. & Kacar, Sezgin & Pham, Viet-Thanh & Alsaadi, Fawaz E., 2020. "A new fractional-order hyperchaotic memristor oscillator: Dynamic analysis, robust adaptive synchronization, and its application to voice encryption," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    4. Du, Feifei & Lu, Jun-Guo, 2021. "New criterion for finite-time synchronization of fractional order memristor-based neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    5. Gu, Yajuan & Wang, Hu & Yu, Yongguang, 2020. "Synchronization for fractional-order discrete-time neural networks with time delays," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    6. Wu, Guo-Cheng & Baleanu, Dumitru & Luo, Wei-Hua, 2017. "Lyapunov functions for Riemann–Liouville-like fractional difference equations," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 228-236.
    7. Lei, Dong & Liang, Yingjie & Xiao, Rui, 2018. "A fractional model with parallel fractional Maxwell elements for amorphous thermoplastics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 465-475.
    8. Mo, Lipo & Yuan, Xiaolin & Yu, Yongguang, 2018. "Target-encirclement control of fractional-order multi-agent systems with a leader," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 479-491.
    9. Liu, Xianggang & Ma, Li, 2020. "Chaotic vibration, bifurcation, stabilization and synchronization control for fractional discrete-time systems," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    10. Luo, Cheng & Liu, Bao-Qing & Hou, Hu-Shuang, 2021. "Fractional chaotic maps with q–deformation," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    11. Kirtphaiboon, Sarinya & Humphries, Usa & Khan, Amir & Yusuf, Abdullahi, 2021. "Model of rice blast disease under tropical climate conditions," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    12. Li, Yuxing & Geng, Bo & Jiao, Shangbin, 2022. "Dispersion entropy-based Lempel-Ziv complexity: A new metric for signal analysis," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    13. Weiyuan Ma & Changpin Li & Jingwei Deng, 2019. "Synchronization in Tempered Fractional Complex Networks via Auxiliary System Approach," Complexity, Hindawi, vol. 2019, pages 1-12, November.
    14. Nosrati, Komeil & Shafiee, Masoud, 2018. "Fractional-order singular logistic map: Stability, bifurcation and chaos analysis," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 224-238.
    15. Mohamed, Sara M. & Sayed, Wafaa S. & Said, Lobna A. & Radwan, Ahmed G., 2022. "FPGA realization of fractals based on a new generalized complex logistic map," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    16. Vignesh, D. & He, Shaobo & Banerjee, Santo, 2023. "Modelling discrete time fractional Rucklidge system with complex state variables and its synchronization," Applied Mathematics and Computation, Elsevier, vol. 455(C).
    17. Jajarmi, Amin & Hajipour, Mojtaba & Baleanu, Dumitru, 2017. "New aspects of the adaptive synchronization and hyperchaos suppression of a financial model," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 285-296.
    18. Huang, Chengdai & Cao, Jinde, 2017. "Active control strategy for synchronization and anti-synchronization of a fractional chaotic financial system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 262-275.
    19. Yao, Yu & Wu, Li-Bing, 2022. "Backstepping control for fractional discrete-time systems," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    20. Baleanu, Dumitru & Wu, Guo–Cheng & Zeng, Sheng–Da, 2017. "Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 99-105.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:5:p:843-:d:361961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.