IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v78y2022i3p1122-1126.html
   My bibliography  Save this article

Rejoinder to discussions of “distributional independent component analysis for diverse neuroimaging modalities”

Author

Listed:
  • Ben Wu
  • Subhadip Pal
  • Jian Kang
  • Ying Guo

Abstract

We thank the editors for organizing the discussions and the discussants for insightful comments. Our rejoinder provides results and comments to address the questions raised in the discussions. Specifically, we present results showing DICA largely demonstrates better or comparable stability as compared with standard ICA. We also validate the DICA in real fMRI application by showing DICA generally shows higher reliability in reproducibly recovering major brain functional networks as compared with the standard ICA. We provide details on the computational complexity of the method. The computational cost of DICA is very reasonable with the analysis of the fMRI and DTI data easily implementable on a PC or laptop. Finally, we include discussions on several directions for extending the DICA framework in the future.

Suggested Citation

  • Ben Wu & Subhadip Pal & Jian Kang & Ying Guo, 2022. "Rejoinder to discussions of “distributional independent component analysis for diverse neuroimaging modalities”," Biometrics, The International Biometric Society, vol. 78(3), pages 1122-1126, September.
  • Handle: RePEc:bla:biomet:v:78:y:2022:i:3:p:1122-1126
    DOI: 10.1111/biom.13588
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13588
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13588?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ying Guo & Li Tang, 2013. "A Hierarchical Model for Probabilistic Independent Component Analysis of Multi-Subject fMRI Studies," Biometrics, The International Biometric Society, vol. 69(4), pages 970-981, December.
    2. Branislav Panić & Jernej Klemenc & Marko Nagode, 2020. "Improved Initialization of the EM Algorithm for Mixture Model Parameter Estimation," Mathematics, MDPI, vol. 8(3), pages 1-29, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Branislav Panić & Marko Nagode & Jernej Klemenc & Simon Oman, 2022. "On Methods for Merging Mixture Model Components Suitable for Unsupervised Image Segmentation Tasks," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
    2. Ben Wu & Subhadip Pal & Jian Kang & Ying Guo, 2022. "Distributional independent component analysis for diverse neuroimaging modalities," Biometrics, The International Biometric Society, vol. 78(3), pages 1092-1105, September.
    3. Senthil Kumar Jagatheesaperumal & Varun Prakash Rajamohan & Abdul Khader Jilani Saudagar & Abdullah AlTameem & Muhammad Sajjad & Khan Muhammad, 2023. "MoMo: Mouse-Based Motion Planning for Optimized Grasping to Declutter Objects Using a Mobile Robotic Manipulator," Mathematics, MDPI, vol. 11(20), pages 1-25, October.
    4. Nagode, Marko & Oman, Simon & Klemenc, Jernej & Panić, Branislav, 2023. "Gumbel mixture modelling for multiple failure data," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Yingkui Jiao & Zhiwei Li & Junchao Zhu & Bin Xue & Baofeng Zhang, 2022. "ABIDE: A Novel Scheme for Ultrasonic Echo Estimation by Combining CEEMD-SSWT Method with EM Algorithm," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    6. Yinan Li & Kai-Tai Fang & Ping He & Heng Peng, 2022. "Representative Points from a Mixture of Two Normal Distributions," Mathematics, MDPI, vol. 10(21), pages 1-28, October.
    7. Zhao, Yuxuan & Matteson, David S. & Mostofsky, Stewart H. & Nebel, Mary Beth & Risk, Benjamin B., 2022. "Group linear non-Gaussian component analysis with applications to neuroimaging," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:3:p:1122-1126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.