IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i12p2225-d462010.html
   My bibliography  Save this article

Scheduling Optimization in Flowline Manufacturing Cell Considering Intercell Movement with Harmony Search Approach

Author

Listed:
  • Zhuang Huang

    (School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China)

  • Jianjun Yang

    (School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China)

Abstract

Based on the non-permutation property of intercell scheduling in flowline manufacturing cells, a hybrid harmony search algorithm is proposed to solve the problem with the makespan criterion. On the basis of the basic harmony search algorithm, the three key elements of memory consideration, pitch adjustment and random selection are discretized and improved to adapt to the operation-based encoding. To compare the performance, different scale cases are generated in both the overall solution and the two-stage solution with the proposed algorithm, the hybrid particle swarm optimization algorithm and the hybrid genetic algorithm. The relative deviation is taken as the performance index. The compared results show that a better solution can be obtained with the proposed algorithm in both the overall solution and the two-stage solution, verifying the superior performance of the proposed algorithm.

Suggested Citation

  • Zhuang Huang & Jianjun Yang, 2020. "Scheduling Optimization in Flowline Manufacturing Cell Considering Intercell Movement with Harmony Search Approach," Mathematics, MDPI, vol. 8(12), pages 1-21, December.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2225-:d:462010
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/12/2225/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/12/2225/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamed Hendizadeh, S. & Faramarzi, Hamidreza & Mansouri, S.Afshin & Gupta, Jatinder N.D. & Y ElMekkawy, Tarek, 2008. "Meta-heuristics for scheduling a flowline manufacturing cell with sequence dependent family setup times," International Journal of Production Economics, Elsevier, vol. 111(2), pages 593-605, February.
    2. Solimanpur, Maghsud & Elmi, Atabak, 2013. "A tabu search approach for cell scheduling problem with makespan criterion," International Journal of Production Economics, Elsevier, vol. 141(2), pages 639-645.
    3. J N D Gupta & J E Schaller, 2006. "Minimizing flow time in a flow-line manufacturing cell with family setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(2), pages 163-176, February.
    4. Solimanpur, M. & Vrat, Prem & Shankar, Ravi, 2004. "A heuristic to minimize makespan of cell scheduling problem," International Journal of Production Economics, Elsevier, vol. 88(3), pages 231-241, April.
    5. Logendran, Rasaratnam & Carson, Sara & Hanson, Erik, 2005. "Group scheduling in flexible flow shops," International Journal of Production Economics, Elsevier, vol. 96(2), pages 143-155, May.
    6. Nazari-Heris, Morteza & Babaei, Amir Fakhim & Mohammadi-Ivatloo, Behnam & Asadi, Somayeh, 2018. "Improved harmony search algorithm for the solution of non-linear non-convex short-term hydrothermal scheduling," Energy, Elsevier, vol. 151(C), pages 226-237.
    7. Logendran, Rasaratnam & Mai, Luen & Talkington, Diane, 1995. "Combined heuristics for bi-level group scheduling problems," International Journal of Production Economics, Elsevier, vol. 38(2-3), pages 133-145, March.
    8. J. S. Neufeld & F. F. Teucher & U. Buscher, 2020. "Scheduling flowline manufacturing cells with inter-cellular moves: non-permutation schedules and material flows in the cell scheduling problem," International Journal of Production Research, Taylor & Francis Journals, vol. 58(21), pages 6568-6584, November.
    9. Nawaz, Muhammad & Enscore Jr, E Emory & Ham, Inyong, 1983. "A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem," Omega, Elsevier, vol. 11(1), pages 91-95.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solimanpur, Maghsud & Elmi, Atabak, 2013. "A tabu search approach for cell scheduling problem with makespan criterion," International Journal of Production Economics, Elsevier, vol. 141(2), pages 639-645.
    2. Hamed Hendizadeh, S. & Faramarzi, Hamidreza & Mansouri, S.Afshin & Gupta, Jatinder N.D. & Y ElMekkawy, Tarek, 2008. "Meta-heuristics for scheduling a flowline manufacturing cell with sequence dependent family setup times," International Journal of Production Economics, Elsevier, vol. 111(2), pages 593-605, February.
    3. Liou, Cheng-Dar & Hsieh, Yi-Chih, 2015. "A hybrid algorithm for the multi-stage flow shop group scheduling with sequence-dependent setup and transportation times," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 258-267.
    4. Antonio Costa & Fulvio Antonio Cappadonna & Sergio Fichera, 2017. "A hybrid genetic algorithm for minimizing makespan in a flow-shop sequence-dependent group scheduling problem," Journal of Intelligent Manufacturing, Springer, vol. 28(6), pages 1269-1283, August.
    5. Dongni Li & Xianwen Meng & Miao Li & Yunna Tian, 2016. "An ACO-based intercell scheduling approach for job shop cells with multiple single processing machines and one batch processing machine," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 283-296, April.
    6. Solimanpur, M. & Vrat, Prem & Shankar, Ravi, 2004. "A heuristic to minimize makespan of cell scheduling problem," International Journal of Production Economics, Elsevier, vol. 88(3), pages 231-241, April.
    7. Feng, Yanling & Li, Guo & Sethi, Suresh P., 2018. "A three-layer chromosome genetic algorithm for multi-cell scheduling with flexible routes and machine sharing," International Journal of Production Economics, Elsevier, vol. 196(C), pages 269-283.
    8. Liji Shen & Jatinder N. D. Gupta, 2018. "Family scheduling with batch availability in flow shops to minimize makespan," Journal of Scheduling, Springer, vol. 21(2), pages 235-249, April.
    9. Lin, Shih-Wei & Ying, Kuo-Ching & Lu, Chung-Cheng & Gupta, Jatinder N.D., 2011. "Applying multi-start simulated annealing to schedule a flowline manufacturing cell with sequence dependent family setup times," International Journal of Production Economics, Elsevier, vol. 130(2), pages 246-254, April.
    10. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    11. Logendran, Rasaratnam & deSzoeke, Paula & Barnard, Faith, 2006. "Sequence-dependent group scheduling problems in flexible flow shops," International Journal of Production Economics, Elsevier, vol. 102(1), pages 66-86, July.
    12. Amin-Naseri, Mohammad Reza & Beheshti-Nia, Mohammad Ali, 2009. "Hybrid flow shop scheduling with parallel batching," International Journal of Production Economics, Elsevier, vol. 117(1), pages 185-196, January.
    13. Andrzej Kozik, 2017. "Handling precedence constraints in scheduling problems by the sequence pair representation," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 445-472, February.
    14. Hongyu He & Yanzhi Zhao & Xiaojun Ma & Zheng-Guo Lv & Ji-Bo Wang, 2023. "Branch-and-Bound and Heuristic Algorithms for Group Scheduling with Due-Date Assignment and Resource Allocation," Mathematics, MDPI, vol. 11(23), pages 1-14, November.
    15. Sündüz Dağ, 2013. "An Application On Flowshop Scheduling," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 1(1), pages 47-56, December.
    16. Bozorgirad, Mir Abbas & Logendran, Rasaratnam, 2013. "Bi-criteria group scheduling in hybrid flowshops," International Journal of Production Economics, Elsevier, vol. 145(2), pages 599-612.
    17. Chen, Chuen-Lung & Vempati, Venkateswara S. & Aljaber, Nasser, 1995. "An application of genetic algorithms for flow shop problems," European Journal of Operational Research, Elsevier, vol. 80(2), pages 389-396, January.
    18. Barry B. & Quim Castellà & Angel A. & Helena Ramalhinho Lourenco & Manuel Mateo, 2012. "ILS-ESP: An Efficient, Simple, and Parameter-Free Algorithm for Solving the Permutation Flow-Shop Problem," Working Papers 636, Barcelona School of Economics.
    19. Gupta, Jatinder N.D. & Koulamas, Christos & Kyparisis, George J., 2006. "Performance guarantees for flowshop heuristics to minimize makespan," European Journal of Operational Research, Elsevier, vol. 169(3), pages 865-872, March.
    20. Yu-Jun Zheng & Yi-Chen Du & Wei-Guo Sheng & Hai-Feng Ling, 2019. "Collaborative Human–UAV Search and Rescue for Missing Tourists in Nature Reserves," Interfaces, INFORMS, vol. 49(5), pages 371-383, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2225-:d:462010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.