IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i14p2446-d862046.html
   My bibliography  Save this article

A Stacking Learning Model Based on Multiple Similar Days for Short-Term Load Forecasting

Author

Listed:
  • Qi Jiang

    (School of Information Engineering, Nanchang University, Nanchang 330031, China
    These authors contributed equally to this work.)

  • Yuxin Cheng

    (School of Information Engineering, Nanchang University, Nanchang 330031, China
    These authors contributed equally to this work.)

  • Haozhe Le

    (School of Information Engineering, Nanchang University, Nanchang 330031, China)

  • Chunquan Li

    (School of Information Engineering, Nanchang University, Nanchang 330031, China)

  • Peter X. Liu

    (School of Information Engineering, Nanchang University, Nanchang 330031, China
    Department of Systems and Computer Engineering, Carleton University, Ottawa, ON K1S 5B7, Canada)

Abstract

It is challenging to obtain accurate and efficient predictions in short-term load forecasting (STLF) systems due to the complexity and nonlinearity of the electric load signals. To address these problems, we propose a hybrid predictive model that includes a sliding-window algorithm, a stacking ensemble neural network, and a similar-days predictive method. First, we leverage a sliding-window algorithm to process the time-series electric load data with high nonlinearity and non-stationarity. Second, we propose an ensemble learning scheme of stacking neural networks to improve forecasting performance. Specifically, the stacking neural networks contain two types of networks: the base-layer and the meta-layer networks. During the pre-training process, the base-layer network integrates a radial basis function (RBF), random vector functional link (RVFL), and backpropagation neural network (BPNN) to provide a robust predictive model. The meta-layer network utilizes a deep belief network (DBN) and the improved broad learning system (BLS) to enhance predictive accuracy. Finally, the similar-days prediction method is developed to extract the relationship of electric load data in different time dimensions, further enhancing the robustness and accuracy of the model. To demonstrate the effectiveness of our model, it is evaluated using real data from five regions of the United States in three consecutive years. We compare our method with several state-of-the-art and conventional neural-network-based models. Our proposed algorithm improves the prediction accuracy by 16.08%, 16.83%, and 22.64% compared to DWT-EMD-RVFL, SWT-LSTM, and EMD-BLS, respectively. Empirical results demonstrate that our model achieves better accuracy and robustness compared with the baselines.

Suggested Citation

  • Qi Jiang & Yuxin Cheng & Haozhe Le & Chunquan Li & Peter X. Liu, 2022. "A Stacking Learning Model Based on Multiple Similar Days for Short-Term Load Forecasting," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2446-:d:862046
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/14/2446/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/14/2446/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ghofrani, M. & Ghayekhloo, M. & Arabali, A. & Ghayekhloo, A., 2015. "A hybrid short-term load forecasting with a new input selection framework," Energy, Elsevier, vol. 81(C), pages 777-786.
    2. Hu, Yusha & Li, Jigeng & Hong, Mengna & Ren, Jingzheng & Lin, Ruojue & Liu, Yue & Liu, Mengru & Man, Yi, 2019. "Short term electric load forecasting model and its verification for process industrial enterprises based on hybrid GA-PSO-BPNN algorithm—A case study of papermaking process," Energy, Elsevier, vol. 170(C), pages 1215-1227.
    3. Singh, Priyanka & Dwivedi, Pragya, 2018. "Integration of new evolutionary approach with artificial neural network for solving short term load forecast problem," Applied Energy, Elsevier, vol. 217(C), pages 537-549.
    4. Pavel V. Matrenin & Vadim Z. Manusov & Alexandra I. Khalyasmaa & Dmitry V. Antonenkov & Stanislav A. Eroshenko & Denis N. Butusov, 2020. "Improving Accuracy and Generalization Performance of Small-Size Recurrent Neural Networks Applied to Short-Term Load Forecasting," Mathematics, MDPI, vol. 8(12), pages 1-17, December.
    5. Che, JinXing & Wang, JianZhou, 2014. "Short-term load forecasting using a kernel-based support vector regression combination model," Applied Energy, Elsevier, vol. 132(C), pages 602-609.
    6. Sun, Gaiping & Jiang, Chuanwen & Cheng, Pan & Liu, Yangyang & Wang, Xu & Fu, Yang & He, Yang, 2018. "Short-term wind power forecasts by a synthetical similar time series data mining method," Renewable Energy, Elsevier, vol. 115(C), pages 575-584.
    7. Shahid, Farah & Zameer, Aneela & Muneeb, Muhammad, 2021. "A novel genetic LSTM model for wind power forecast," Energy, Elsevier, vol. 223(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdullah Alrasheedi & Abdulaziz Almalaq, 2022. "Hybrid Deep Learning Applied on Saudi Smart Grids for Short-Term Load Forecasting," Mathematics, MDPI, vol. 10(15), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Guo-Feng & Peng, Li-Ling & Hong, Wei-Chiang, 2018. "Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model," Applied Energy, Elsevier, vol. 224(C), pages 13-33.
    2. Zhu, Jiawei & Lin, Yishuai & Lei, Weidong & Liu, Youquan & Tao, Mengling, 2019. "Optimal household appliances scheduling of multiple smart homes using an improved cooperative algorithm," Energy, Elsevier, vol. 171(C), pages 944-955.
    3. Wei-Chiang Hong & Guo-Feng Fan, 2019. "Hybrid Empirical Mode Decomposition with Support Vector Regression Model for Short Term Load Forecasting," Energies, MDPI, vol. 12(6), pages 1-16, March.
    4. He, Yaoyao & Xu, Qifa & Wan, Jinhong & Yang, Shanlin, 2016. "Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function," Energy, Elsevier, vol. 114(C), pages 498-512.
    5. Talaat, M. & Farahat, M.A. & Mansour, Noura & Hatata, A.Y., 2020. "Load forecasting based on grasshopper optimization and a multilayer feed-forward neural network using regressive approach," Energy, Elsevier, vol. 196(C).
    6. Lai, Changzhi & Wang, Yu & Fan, Kai & Cai, Qilin & Ye, Qing & Pang, Haoqiang & Wu, Xi, 2022. "An improved forecasting model of short-term electric load of papermaking enterprises for production line optimization," Energy, Elsevier, vol. 245(C).
    7. Jungwon Yu & June Ho Park & Sungshin Kim, 2018. "A New Input Selection Algorithm Using the Group Method of Data Handling and Bootstrap Method for Support Vector Regression Based Hourly Load Forecasting," Energies, MDPI, vol. 11(11), pages 1-20, October.
    8. Yuanyuan Zhou & Min Zhou & Qing Xia & Wei-Chiang Hong, 2019. "Construction of EMD-SVR-QGA Model for Electricity Consumption: Case of University Dormitory," Mathematics, MDPI, vol. 7(12), pages 1-23, December.
    9. Hu, Yi & Qu, Boyang & Wang, Jie & Liang, Jing & Wang, Yanli & Yu, Kunjie & Li, Yaxin & Qiao, Kangjia, 2021. "Short-term load forecasting using multimodal evolutionary algorithm and random vector functional link network based ensemble learning," Applied Energy, Elsevier, vol. 285(C).
    10. Khoshrou, Abdolrahman & Pauwels, Eric J., 2019. "Short-term scenario-based probabilistic load forecasting: A data-driven approach," Applied Energy, Elsevier, vol. 238(C), pages 1258-1268.
    11. He, Feifei & Zhou, Jianzhong & Feng, Zhong-kai & Liu, Guangbiao & Yang, Yuqi, 2019. "A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm," Applied Energy, Elsevier, vol. 237(C), pages 103-116.
    12. Tayab, Usman Bashir & Zia, Ali & Yang, Fuwen & Lu, Junwei & Kashif, Muhammad, 2020. "Short-term load forecasting for microgrid energy management system using hybrid HHO-FNN model with best-basis stationary wavelet packet transform," Energy, Elsevier, vol. 203(C).
    13. Mohan, Neethu & Soman, K.P. & Sachin Kumar, S., 2018. "A data-driven strategy for short-term electric load forecasting using dynamic mode decomposition model," Applied Energy, Elsevier, vol. 232(C), pages 229-244.
    14. Nantian Huang & Guobo Lu & Dianguo Xu, 2016. "A Permutation Importance-Based Feature Selection Method for Short-Term Electricity Load Forecasting Using Random Forest," Energies, MDPI, vol. 9(10), pages 1-24, September.
    15. Lin Lin & Lin Xue & Zhiqiang Hu & Nantian Huang, 2018. "Modular Predictor for Day-Ahead Load Forecasting and Feature Selection for Different Hours," Energies, MDPI, vol. 11(7), pages 1-30, July.
    16. Khazaei, Sahra & Ehsan, Mehdi & Soleymani, Soodabeh & Mohammadnezhad-Shourkaei, Hosein, 2022. "A high-accuracy hybrid method for short-term wind power forecasting," Energy, Elsevier, vol. 238(PC).
    17. Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
    18. He, Yaoyao & Liu, Rui & Li, Haiyan & Wang, Shuo & Lu, Xiaofen, 2017. "Short-term power load probability density forecasting method using kernel-based support vector quantile regression and Copula theory," Applied Energy, Elsevier, vol. 185(P1), pages 254-266.
    19. Laouafi, Abderrezak & Laouafi, Farida & Boukelia, Taqiy Eddine, 2022. "An adaptive hybrid ensemble with pattern similarity analysis and error correction for short-term load forecasting," Applied Energy, Elsevier, vol. 322(C).
    20. Chitsazan, Mohammad Amin & Sami Fadali, M. & Trzynadlowski, Andrzej M., 2019. "Wind speed and wind direction forecasting using echo state network with nonlinear functions," Renewable Energy, Elsevier, vol. 131(C), pages 879-889.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2446-:d:862046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.