IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v316y2018icp296-309.html
   My bibliography  Save this article

How many k-step linear block methods exist and which of them is the most efficient and simplest one?

Author

Listed:
  • Ramos, Higinio
  • Popescu, Paul

Abstract

There have appeared in the literature a lot of k-step block methods for solving initial-value problems. The methods consist in a set of k simultaneous multistep formulas over k non-overlapping intervals. A feature of block methods is that there is no need of other procedures to provide starting approximations, and thus the methods are self-starting (sharing this advantage of Runge–Kutta methods). All the formulas are usually obtained from a continuous approximation derived via interpolation and collocation at k+1 points. Nevertheless, all the k-step block methods thus obtained may be considered as different formulations of one of them, which results to be the most efficient and simple formulation of all of them. The theoretical analysis and the numerical experiments presented support this claim.

Suggested Citation

  • Ramos, Higinio & Popescu, Paul, 2018. "How many k-step linear block methods exist and which of them is the most efficient and simplest one?," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 296-309.
  • Handle: RePEc:eee:apmaco:v:316:y:2018:i:c:p:296-309
    DOI: 10.1016/j.amc.2017.08.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300317305878
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2017.08.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Mehdizadeh Khalsaraei & Ali Shokri & Samad Noeiaghdam & Maryam Molayi, 2021. "Nonstandard Finite Difference Schemes for an SIR Epidemic Model," Mathematics, MDPI, vol. 9(23), pages 1-13, November.
    2. Mohammad Mehdizadeh Khalsaraei & Ali Shokri & Higinio Ramos & Shao-Wen Yao & Maryam Molayi, 2022. "Efficient Numerical Solutions to a SIR Epidemic Model," Mathematics, MDPI, vol. 10(18), pages 1-15, September.
    3. Khalsaraei, Mohammad Mehdizadeh & Shokri, Ali & Ramos, Higinio & Heydari, Shahin, 2021. "A positive and elementary stable nonstandard explicit scheme for a mathematical model of the influenza disease," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 397-410.
    4. Singh, Gurjinder & Garg, Arvind & Kanwar, V. & Ramos, Higinio, 2019. "An efficient optimized adaptive step-size hybrid block method for integrating differential systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    5. Higinio Ramos & Samuel N. Jator & Mark I. Modebei, 2020. "Efficient k -Step Linear Block Methods to Solve Second Order Initial Value Problems Directly," Mathematics, MDPI, vol. 8(10), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:316:y:2018:i:c:p:296-309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.