IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v102y2017icp127-134.html
   My bibliography  Save this article

Mellin integral transform approach to analyze the multidimensional diffusion-wave equations

Author

Listed:
  • Boyadjiev, Lyubomir
  • Luchko, Yuri

Abstract

In this paper, a family of the multidimensional time- and space-fractional diffusion-wave equations with the Caputo time-fractional derivative of the order β, 0 < β ⩽ 2 and the fractional Laplacian (−Δ)α2 with 1 < α ⩽ 2 is considered. A representation of the first fundamental solution to this equation is deduced in form of a Mellin–Barnes integral by employing the technique of the Mellin integral transform. The Mellin–Barnes representation is used to derive some new identities for the fundamental solutions in different dimensions and to identify already known and some new particular cases of the fundamental solution that have especially simple closed form.

Suggested Citation

  • Boyadjiev, Lyubomir & Luchko, Yuri, 2017. "Mellin integral transform approach to analyze the multidimensional diffusion-wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 127-134.
  • Handle: RePEc:eee:chsofr:v:102:y:2017:i:c:p:127-134
    DOI: 10.1016/j.chaos.2017.03.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917301121
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.03.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Refai, Mohammed & Luchko, Yuri, 2015. "Maximum principle for the multi-term time-fractional diffusion equations with the Riemann–Liouville fractional derivatives," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 40-51.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuri Luchko, 2019. "Some Schemata for Applications of the Integral Transforms of Mathematical Physics," Mathematics, MDPI, vol. 7(3), pages 1-18, March.
    2. Awad, Emad & Sandev, Trifce & Metzler, Ralf & Chechkin, Aleksei, 2021. "Closed-form multi-dimensional solutions and asymptotic behaviors for subdiffusive processes with crossovers: I. Retarding case," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Ansari, Alireza & Derakhshan, Mohammad Hossein, 2023. "On spectral polar fractional Laplacian," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 636-663.
    4. Francesco Mainardi & Armando Consiglio, 2020. "The Wright Functions of the Second Kind in Mathematical Physics," Mathematics, MDPI, vol. 8(6), pages 1-26, June.
    5. Emilia Bazhlekova & Ivan Bazhlekov, 2019. "Subordination Approach to Space-Time Fractional Diffusion," Mathematics, MDPI, vol. 7(5), pages 1-12, May.
    6. Yuri Luchko, 2017. "On Some New Properties of the Fundamental Solution to the Multi-Dimensional Space- and Time-Fractional Diffusion-Wave Equation," Mathematics, MDPI, vol. 5(4), pages 1-16, December.
    7. Ervenila Musta Xhaferraj, 2022. "The New Integral Transform: E Transform\" and Its Applications"," European Journal of Formal Sciences and Engineering, European Center for Science Education and Research, vol. 6, January -.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atangana, Abdon & Gómez-Aguilar, J.F., 2017. "Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 285-294.
    2. Marina Popolizio, 2018. "Numerical Solution of Multiterm Fractional Differential Equations Using the Matrix Mittag–Leffler Functions," Mathematics, MDPI, vol. 6(1), pages 1-13, January.
    3. Elsayed I. Mahmoud & Temirkhan S. Aleroev, 2022. "Boundary Value Problem of Space-Time Fractional Advection Diffusion Equation," Mathematics, MDPI, vol. 10(17), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:102:y:2017:i:c:p:127-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.