IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v54y2023i2d10.1007_s13226-022-00271-4.html
   My bibliography  Save this article

The method of lower and upper solution for Hilfer evolution equations with non-instantaneous impulses

Author

Listed:
  • Haide Gou

    (Northwest Normal University)

  • Tianxiang Wang

    (Northwest Normal University)

Abstract

In this article, we study the existence of mild solutions for a class of Hilfer fractional evolution equations with non-instantaneous impulses in ordered Banach spaces. The definition of mild solutions for our problem was given based on a $$C_0$$ C 0 -semigroup $$W(\cdot )$$ W ( · ) generated by the operator $$-A$$ - A and probability density function. By means of monotone iterative technique and the method of lower and upper, the existence of extremal mild solutions between lower and upper mild solutions for nonlinear evolution equation with non-instantaneous impulses is obtained under the situation that the corresponding $$C_0$$ C 0 -semigroup $$W(\cdot )$$ W ( · ) and non-instantaneous impulsive function $$\gamma _k$$ γ k are compact, $$W(\cdot )$$ W ( · ) is not compact and $$\gamma _k$$ γ k is compact, $$W(\cdot )$$ W ( · ) and $$\gamma _k$$ γ k are not compact, respectively. At last, two examples are given to illustrate the abstract results.

Suggested Citation

  • Haide Gou & Tianxiang Wang, 2023. "The method of lower and upper solution for Hilfer evolution equations with non-instantaneous impulses," Indian Journal of Pure and Applied Mathematics, Springer, vol. 54(2), pages 499-523, June.
  • Handle: RePEc:spr:indpam:v:54:y:2023:i:2:d:10.1007_s13226-022-00271-4
    DOI: 10.1007/s13226-022-00271-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-022-00271-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-022-00271-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gautam, Ganga Ram & Dabas, Jaydev, 2015. "Mild solutions for class of neutral fractional functional differential equations with not instantaneous impulses," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 480-489.
    2. Abbas, Saïd & Benchohra, Mouffak, 2015. "Uniqueness and Ulam stabilities results for partial fractional differential equations with not instantaneous impulses," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 190-198.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mallika Arjunan, M. & Abdeljawad, Thabet & Kavitha, V. & Yousef, Ali, 2021. "On a new class of Atangana-Baleanu fractional Volterra-Fredholm integro-differential inclusions with non-instantaneous impulses," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    2. Yang, Dan & Wang, JinRong & O’Regan, D., 2018. "A class of nonlinear non-instantaneous impulsive differential equations involving parameters and fractional order," Applied Mathematics and Computation, Elsevier, vol. 321(C), pages 654-671.
    3. Li, Mengmeng & Wang, JinRong, 2018. "Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations," Applied Mathematics and Computation, Elsevier, vol. 324(C), pages 254-265.
    4. Jayanta Borah & Swaroop Nandan Bora, 2020. "Sufficient Conditions for Existence of Integral Solution for Non-Instantaneous Impulsive Fractional Evolution Equations," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(3), pages 1065-1082, September.
    5. Balasubramaniam, P., 2021. "Controllability of semilinear noninstantaneous impulsive ABC neutral fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Liu, Kui & Wang, JinRong & Zhou, Yong & O’Regan, Donal, 2020. "Hyers–Ulam stability and existence of solutions for fractional differential equations with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    7. JinRong Wang & Michal Fečkan & Amar Debbouche, 2019. "Time Optimal Control of a System Governed by Non-instantaneous Impulsive Differential Equations," Journal of Optimization Theory and Applications, Springer, vol. 182(2), pages 573-587, August.
    8. Yu Chen & JinRong Wang, 2019. "Continuous Dependence of Solutions of Integer and Fractional Order Non-Instantaneous Impulsive Equations with Random Impulsive and Junction Points," Mathematics, MDPI, vol. 7(4), pages 1-13, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:54:y:2023:i:2:d:10.1007_s13226-022-00271-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.