IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i20p3825-d943838.html
   My bibliography  Save this article

Bifurcation Analysis and Numerical Study of Wave Solution for Initial-Boundary Value Problem of the KdV-BBM Equation

Author

Listed:
  • Teeranush Suebcharoen

    (Advanced Research Center for Computational Simulation, Chiang Mai University, Chiang Mai 50200, Thailand
    Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
    Centre of Excellence in Mathematics, MHESI, Bangkok 10400, Thailand)

  • Kanyuta Poochinapan

    (Advanced Research Center for Computational Simulation, Chiang Mai University, Chiang Mai 50200, Thailand
    Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
    Centre of Excellence in Mathematics, MHESI, Bangkok 10400, Thailand)

  • Ben Wongsaijai

    (Advanced Research Center for Computational Simulation, Chiang Mai University, Chiang Mai 50200, Thailand
    Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
    Centre of Excellence in Mathematics, MHESI, Bangkok 10400, Thailand)

Abstract

In this work, we study the bifurcation and the numerical analysis of the nonlinear Benjamin-Bona-Mahony-KdV equation. According to the bifurcation theory of a dynamic system, the various kinds of traveling wave profiles are obtained including the behavior of solitary and periodic waves. Additionally, a two-level linear implicit finite difference algorithm is implemented for investigating the Benjamin-Bona-Mahony-KdV model. The application of a priori estimation for the approximate solution also provides the convergence and stability analysis. It was demonstrated that the current approach is singularly solvable and that both time and space convergence are of second-order precision. To confirm the computational effectiveness, two numerical simulations are prepared. The findings show that the current technique performs admirably in terms of delivering second-order accuracy in both time and space with the maximum norm while outperforming prior schemes.

Suggested Citation

  • Teeranush Suebcharoen & Kanyuta Poochinapan & Ben Wongsaijai, 2022. "Bifurcation Analysis and Numerical Study of Wave Solution for Initial-Boundary Value Problem of the KdV-BBM Equation," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3825-:d:943838
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/20/3825/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/20/3825/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kanyuta Poochinapan & Ben Wongsaijai & Thongchai Disyadej, 2014. "Efficiency of High-Order Accurate Difference Schemes for the Korteweg-de Vries Equation," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-8, December.
    2. Yiren Chen & Shaoyong Li & Mohammad Mirzazadeh, 2021. "New Traveling Wave Solutions and Interesting Bifurcation Phenomena of Generalized KdV-mKdV-Like Equation," Advances in Mathematical Physics, Hindawi, vol. 2021, pages 1-6, November.
    3. You, Xiangcheng & Xu, Hang & Sun, Qiang, 2022. "Analysis of BBM solitary wave interactions using the conserved quantities," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    4. Changna Lu & Qianqian Gao & Chen Fu & Hongwei Yang, 2017. "Finite Element Method of BBM-Burgers Equation with Dissipative Term Based on Adaptive Moving Mesh," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-11, November.
    5. Rouatbi, Asma & Omrani, Khaled, 2017. "Two conservative difference schemes for a model of nonlinear dispersive equations," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 516-530.
    6. He, Dongdong & Pan, Kejia, 2015. "A linearly implicit conservative difference scheme for the generalized Rosenau–Kawahara-RLW equation," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 323-336.
    7. Jiraporn Janwised & Ben Wongsaijai & Thanasak Mouktonglang & Kanyuta Poochinapan, 2014. "A Modified Three-Level Average Linear-Implicit Finite Difference Method for the Rosenau-Burgers Equation," Advances in Mathematical Physics, Hindawi, vol. 2014, pages 1-11, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wongsaijai, Ben & Poochinapan, Kanyuta, 2021. "Optimal decay rates of the dissipative shallow water waves modeled by coupling the Rosenau-RLW equation and the Rosenau-Burgers equation with power of nonlinearity," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    2. Mouktonglang, Thanasak & Yimnet, Suriyon & Sukantamala, Nattakorn & Wongsaijai, Ben, 2022. "Dynamical behaviors of the solution to a periodic initial–boundary value problem of the generalized Rosenau-RLW-Burgers equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 114-136.
    3. Poochinapan, Kanyuta & Wongsaijai, Ben, 2023. "High-performance computing of structure-preserving algorithm for the coupled BBM system formulated by weighted compact difference operators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 439-467.
    4. Poochinapan, Kanyuta & Wongsaijai, Ben, 2022. "Numerical analysis for solving Allen-Cahn equation in 1D and 2D based on higher-order compact structure-preserving difference scheme," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    5. Hamid Ghadiri & Hamed Khodadadi & Saleh Mobayen & Jihad H. Asad & Thaned Rojsiraphisal & Arthur Chang, 2021. "Observer-Based Robust Control Method for Switched Neutral Systems in the Presence of Interval Time-Varying Delays," Mathematics, MDPI, vol. 9(19), pages 1-20, October.
    6. Tongshuai Liu & Huanhe Dong, 2019. "The Prolongation Structure of the Modified Nonlinear Schrödinger Equation and Its Initial-Boundary Value Problem on the Half Line via the Riemann-Hilbert Approach," Mathematics, MDPI, vol. 7(2), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3825-:d:943838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.