IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/5258375.html
   My bibliography  Save this article

Algebro-Geometric Solutions for a Discrete Integrable Equation

Author

Listed:
  • Mengshuang Tao
  • Huanhe Dong

Abstract

With the assistance of a Lie algebra whose element is a matrix, we introduce a discrete spectral problem. By means of discrete zero curvature equation, we obtain a discrete integrable hierarchy. According to decomposition of the discrete systems, the new differential-difference integrable systems with two-potential functions are derived. By constructing the Abel-Jacobi coordinates to straighten the continuous and discrete flows, the Riemann theta functions are proposed. Based on the Riemann theta functions, the algebro-geometric solutions for the discrete integrable systems are obtained.

Suggested Citation

  • Mengshuang Tao & Huanhe Dong, 2017. "Algebro-Geometric Solutions for a Discrete Integrable Equation," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-9, November.
  • Handle: RePEc:hin:jnddns:5258375
    DOI: 10.1155/2017/5258375
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2017/5258375.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2017/5258375.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/5258375?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tongshuai Liu & Huanhe Dong, 2019. "The Prolongation Structure of the Modified Nonlinear Schrödinger Equation and Its Initial-Boundary Value Problem on the Half Line via the Riemann-Hilbert Approach," Mathematics, MDPI, vol. 7(2), pages 1-17, February.
    2. Lei Fu & Yaodeng Chen & Hongwei Yang, 2019. "Time-Space Fractional Coupled Generalized Zakharov-Kuznetsov Equations Set for Rossby Solitary Waves in Two-Layer Fluids," Mathematics, MDPI, vol. 7(1), pages 1-13, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:5258375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.