IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i11p1097-d286541.html
   My bibliography  Save this article

Evaluating the Suitability of a Smart Technology Application for Fall Detection Using a Fuzzy Collaborative Intelligence Approach

Author

Listed:
  • Yu-Cheng Lin

    (Department of Computer-Aided Industrial Design, Overseas Chinese University, Taichung 40721, Taiwan)

  • Yu-Cheng Wang

    (Department of Aeronautical Engineering, Chaoyang University of Technology, Taichung 41349, Taiwan)

  • Tin-Chih Toly Chen

    (Department of Industrial Engineering and Management, National Chiao Tung University, 1001, University Road, Hsinchu 30010, Taiwan)

  • Hai-Fen Lin

    (Electronic Systems Research Division, National Chung-Shan Institute of Science & Technology, Taoyuan County 32557, Taiwan)

Abstract

Fall detection is a critical task in an aging society. To fulfill this task, smart technology applications have great potential. However, it is not easy to choose a suitable smart technology application for fall detection. To address this issue, a fuzzy collaborative intelligence approach is proposed in this study. In the fuzzy collaborative intelligence approach, alpha-cut operations are applied to derive the fuzzy weights of criteria for each decision maker. Then, fuzzy intersection is applied to aggregate the fuzzy weights derived by all decision makers. Subsequently, the fuzzy technique for order preference by similarity to the ideal solution is applied to assess the suitability of a smart technology application for fall detection. The fuzzy collaborative intelligence approach is a posterior-aggregation method that guarantees a consensus exists among decision makers. After applying the fuzzy collaborative intelligence approach to assess the suitabilities of four existing smart technology applications for fall detection, the most and least suitable smart technology applications were smart carpet and smart cane, respectively. In addition, the ranking result using the proposed methodology was somewhat different from those using three existing methods.

Suggested Citation

  • Yu-Cheng Lin & Yu-Cheng Wang & Tin-Chih Toly Chen & Hai-Fen Lin, 2019. "Evaluating the Suitability of a Smart Technology Application for Fall Detection Using a Fuzzy Collaborative Intelligence Approach," Mathematics, MDPI, vol. 7(11), pages 1-21, November.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:11:p:1097-:d:286541
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/11/1097/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/11/1097/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    2. Yu-Cheng Wang & Tin-Chih Toly Chen, 2019. "A Partial-Consensus Posterior-Aggregation FAHP Method—Supplier Selection Problem as an Example," Mathematics, MDPI, vol. 7(2), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharma, Mahak & Antony, Rose & Sehrawat, Rajat & Cruz, Angel Contreras & Daim, Tugrul U., 2022. "Exploring post-adoption behaviors of e-service users: Evidence from the hospitality sector /online travel services," Technology in Society, Elsevier, vol. 68(C).
    2. Hsin-Chieh Wu & Toly Chen & Chin-Hau Huang, 2020. "A Piecewise Linear FGM Approach for Efficient and Accurate FAHP Analysis: Smart Backpack Design as an Example," Mathematics, MDPI, vol. 8(8), pages 1-18, August.
    3. Hsin-Chieh Wu & Yu-Cheng Wang & Tin-Chih Toly Chen, 2020. "Assessing and Comparing COVID-19 Intervention Strategies Using a Varying Partial Consensus Fuzzy Collaborative Intelligence Approach," Mathematics, MDPI, vol. 8(10), pages 1-23, October.
    4. Benyou Jia & Slobodan P. Simonovic & Pingan Zhong & Zhongbo Yu, 2016. "A Multi-Objective Best Compromise Decision Model for Real-Time Flood Mitigation Operations of Multi-Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3363-3387, August.
    5. Pasura Aungkulanon & Walailak Atthirawong & Pongchanun Luangpaiboon & Wirachchaya Chanpuypetch, 2024. "Navigating Supply Chain Resilience: A Hybrid Approach to Agri-Food Supplier Selection," Mathematics, MDPI, vol. 12(10), pages 1-41, May.
    6. Juan Carlos Martín & Veronika Rudchenko & María-Victoria Sánchez-Rebull, 2020. "The Role of Nationality and Hotel Class on Guests’ Satisfaction. A Fuzzy-TOPSIS Approach Applied in Saint Petersburg," Administrative Sciences, MDPI, vol. 10(3), pages 1-24, September.
    7. Jelena Lukić & Mirjana Misita & Dragan D. Milanović & Ankica Borota-Tišma & Aleksandra Janković, 2022. "Determining the Risk Level in Client Analysis by Applying Fuzzy Logic in Insurance Sector," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    8. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    9. Chia-Nan Wang & Ngoc-Ai-Thy Nguyen & Thanh-Tuan Dang & Chen-Ming Lu, 2021. "A Compromised Decision-Making Approach to Third-Party Logistics Selection in Sustainable Supply Chain Using Fuzzy AHP and Fuzzy VIKOR Methods," Mathematics, MDPI, vol. 9(8), pages 1-27, April.
    10. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    11. Lupo, Toni, 2015. "Fuzzy ServPerf model combined with ELECTRE III to comparatively evaluate service quality of international airports in Sicily," Journal of Air Transport Management, Elsevier, vol. 42(C), pages 249-259.
    12. Lixin Shen & Kannan Govindan & Madan Shankar, 2015. "Evaluation of Barriers of Corporate Social Responsibility Using an Analytical Hierarchy Process under a Fuzzy Environment—A Textile Case," Sustainability, MDPI, vol. 7(3), pages 1-22, March.
    13. He-Yau Kang & Amy H. I. Lee & Tzu-Ting Huang, 2016. "Project Management for a Wind Turbine Construction by Applying Fuzzy Multiple Objective Linear Programming Models," Energies, MDPI, vol. 9(12), pages 1-15, December.
    14. Noori, Amir & Bonakdari, Hossein & Salimi, Amir Hossein & Gharabaghi, Bahram, 2021. "A group Multi-Criteria Decision-Making method for water supply choice optimization," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    15. Wang, Xiaojun & Chan, Hing Kai & Li, Dong, 2015. "A case study of an integrated fuzzy methodology for green product development," European Journal of Operational Research, Elsevier, vol. 241(1), pages 212-223.
    16. Animesh Biswas & Samir Kumar, 2019. "Generalization of extent analysis method for solving multicriteria decision making problems involving intuitionistic fuzzy numbers," OPSEARCH, Springer;Operational Research Society of India, vol. 56(4), pages 1142-1166, December.
    17. Ezgi Güler & Süheyla Yerel Kandemir, 2024. "Analysis of PM 10 Substances via Intuitionistic Fuzzy Decision-Making and Statistical Evaluation," Sustainability, MDPI, vol. 16(17), pages 1-23, September.
    18. Bojan Srdjevic & Yvonilde Medeiros, 2008. "Fuzzy AHP Assessment of Water Management Plans," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 877-894, July.
    19. AbdulHafeez Muhammad & Ansar Siddique & Quadri Noorulhasan Naveed & Uzma Khaliq & Ali M. Aseere & Mohd Abul Hasan & Mohamed Rafik N. Qureshi & Basit Shahzad, 2021. "Evaluating Usability of Academic Websites through a Fuzzy Analytical Hierarchical Process," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    20. Wang, Ying-Ming & Luo, Ying & Hua, Zhongsheng, 2008. "On the extent analysis method for fuzzy AHP and its applications," European Journal of Operational Research, Elsevier, vol. 186(2), pages 735-747, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:11:p:1097-:d:286541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.